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Long-term plasticity typically relies on postsynaptic NMDA

receptors to detect the coincidence of pre- and postsynaptic

activity. Recent studies, however, have revealed forms of

plasticity that depend on coincidence detection by presynaptic

NMDA receptors. In the amygdala, cortical afferent associative

presynaptic long-term potentiation (LTP) requires activation of

presynaptic NMDA receptors by simultaneous thalamic and

cortical afferents. Surprisingly, both types of afferent can also

undergo postsynaptically induced NMDA-receptor-dependent

LTP. In the neocortex, spike-timing-dependent long-term

depression (LTD) requires simultaneous activation of

presynaptic NMDA autoreceptors and retrograde signalling by

endocannabinoids. In cerebellar LTD, presynaptic NMDA

receptor activation suggests that similar presynaptic

mechanisms may exist. Recent studies also indicate the

existence of presynaptic coincidence detection that is

independent of NMDA receptors, suggesting that such

mechanisms have a widespread role in plasticity.
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Introduction
One of the most central concepts in neuroscience is the

notion that changes in synaptic strength underlie learning

and memory. In this concept, repeated correlated activity

in connected neurons results in both synaptic modifica-

tion and the formation of a memory trace. The Hebbian

postulate [1] and the subsequent discovery of long-term

potentiation (LTP) in the hippocampus [2] have inspired

hundreds of studies [3,4]. In the classical hippocampal

CA1 model of LTP [3–5], correlated high-frequency

pre- and postsynaptic activity results in presynaptic

release of glutamate and postsynaptic depolarization, such

that postsynaptic glutamate-bound NMDA receptors
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(NMDARs) are relieved from Mg2+ block [6,7] and med-

iate Ca2+ ion flux [8,9], which in turn results in large, brief

spine Ca2+ transients and in LTP induction [3–5,10].

Similarly, relatively weak and more prolonged increases

in Ca2+ owing to low-frequency activity evoke long-term

depression (LTD) that typically depends on the activa-

tion of postsynaptic NMDARs [3,10–12]. More recent

studies have emphasized the temporal order of excitatory

postsynaptic potentials and action potentials in postsy-

naptic Ca2+ signalling [13] and in synaptic plasticity

[14–18,19��], a concept that is termed ‘spike-timing-

dependent plasticity’ (STDP) [10,20]. In this model,

either LTP or LTD is evoked, depending on the relative

millisecond timing of pre- and postsynaptic spikes

[10,20]. Nevertheless, the postsynaptic NMDAR has

remained the canonical coincidence detector in synaptic

plasticity.

In recent years, a more pluralistic view of plasticity has

emerged. Although the classical hippocampal CA1 model

of LTP will undoubtedly prevail as a standard in the field

of synaptic plasticity, it is increasingly clear that plasticity

induction and expression mechanisms vary markedly

according to factors such as brain region, cell and synapse

type, animal age and induction protocol [10,19��,20,21].

Intriguingly, functional [22,23] and anatomical evidence

[24,25] for presynaptic NMDARs imply the possible

existence of presynaptic plasticity induction mechanisms.

In fact, several recent studies have shown that synaptic

plasticity at various central synapses depends on such

presynaptically located NMDARs [26–28]. In this review,

we discuss developments over the past couple of years

and highlight studies pertaining to mechanisms of pre-

synaptic coincidence detection in synaptic plasticity.

Presynaptic coincidence detection
in associative LTP and fear conditioning
Some of the best evidence for the involvement of long-

term plasticity in learning comes from Pavlovian fear

conditioning, a learning model that involves the amygdala

[29,30]. In auditory fear conditioning, for example, the

repeated pairing of a tone with a foot shock leads to a

freezing response when the tone is presented alone. This

model of behavioural learning requires both the amygdala

itself and projections from the auditory cortex and the

auditory medial geniculate body of the thalamus to the

basolateral amygdala [29,30].

Projection neurons of the lateral nucleus of the amygdala

(LA) receive converging excitatory inputs from the
www.sciencedirect.com
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Figure 1

Associative LTP at cortical afferents to the LA depends on a mechanism of coincidence detection by presynaptic NMDARs. (a) Recording

configuration: whole-cell recordings are made in the LA after extracellular stimulation in the thalamus and in the neocortex. (b) Normalized mean

excitatory postsynaptic potential slope before and after simultaneous 30-Hz stimulation (arrow) of cortical (filled circles) and thalamic

(open circles) afferents. Simultaneous stimulation results in the induction of NMDAR-dependent LTP at cortical, but not thalamic, afferent

synapses. This form of associative LTP does not require postsynaptic NMDAR activation, or Ca2+ influx or activity. Scale bars: 2 mV (vertical),

50 ms (horizontal). Reproduced, with permission, from [28].
thalamus and cortex. Anatomical evidence for NMDARs

has been found postsynaptically in both cortical [31] and

thalamic [32] afferent synapses. Indeed, there are also

postsynaptically induced forms of homosynaptic LTP

at both cortical [33] and thalamic [19��] inputs to LA

projection neurons.

Surprisingly, Humeau et al. [28] discovered an associative

form of cortical afferent LTP that does not require post-

synaptic Ca2+ influx or activity, but is still dependent on

NMDARs. This type of LTP was induced by repeated

coincident 30-Hz stimulation of thalamic and cortical
www.sciencedirect.com
afferents onto LA projection neurons, which induced

LTP of cortical but not thalamic inputs (Figure 1). Sti-

mulation at 30 Hz of either pathway alone evoked no

plasticity, demonstrating the associative nature of the

cortical afferent LTP. Intriguingly, intracellular blockade

of postsynaptic NMDARs with the antagonist MK-801

had no effect, suggesting that the NMDARs required for

associative cortical afferent LTP must be located else-

where. Immuno-electron microscopy evidence indicates

the existence of presynaptic NMDARs in the LA [25];

thus, the most straightforward explanation is that the

NMDARs relevant for this form of LTP are located at
Current Opinion in Neurobiology 2006, 16:312–322



314 Signalling mechanisms
or near the terminals of cortical afferent axons. In agree-

ment with this hypothesis, high-frequency activation of

thalamic afferents was found to result in a brief presy-

naptic increase in cortical afferent neurotransmission that

was abolished by NMDAR blockade. Furthermore,

Humeau et al. [28] found that the induction of associative

LTP of cortical inputs resulted in changes in short-term

plasticity and coefficient of variation consistent with a

presynaptic locus of expression.

The existence of a presynaptically induced, presynapti-

cally expressed, heterosynaptic form of LTP at cortical

afferents [28] is all the more intriguing, given the recent

evidence for a postsynaptically induced, postsynaptically

expressed, homosynaptic form of LTP at the thalamic

inputs [19��]. Interestingly, plasticity could be evoked by

a standard STDP protocol at thalamic but not cortical

afferents [19��]. Importantly, these two types of synapse

showed specific morphological and mechanistic differ-

ences: spines of thalamic inputs were larger, displayed

bigger action-potential-evoked Ca2+ transients, and

expressed R-type Ca2+ channels [19��], consistent with

the need for strong postsynaptic increases in Ca2+ in the

postsynaptically induced forms of LTP in the LA

[19��,33]. These differences potentially help to explain

the differing forms of plasticity in the thalamic and

cortical pathways.

These distinct forms of plasticity in separate pathways

onto the LA projection neurons are likely to have evolved

specifically for particular and disparate purposes. What

function might the presynaptically induced cortical affer-

ent LTP serve? Because it does not rely on postsynaptic

suprathreshold activity, it is possible that it might potenti-

ate and thereby ‘prime’ individual, relatively weak cor-

tical inputs for subsequent potentiation through the

homosynaptic form of LTP [33], which requires stronger

postsynaptic activation and larger postsynaptic increases

in Ca2+ [19��]. In keeping with this possibility, postsy-

naptic hyperpolarization in vivo reduces but does not

abolish fear conditioning [34], suggesting that LTP in

the absence of postsynaptic suprathreshold activity also

occurs in vivo, presumably through the presynaptic coin-

cidence detection mechanism discovered by Humeau

et al. [28]. Although the work of Humeau et al. [28] nicely

illustrates the importance of presynaptic coincidence

detection in both plasticity and learning, the information

carried by thalamic and cortical afferents to the LA in

fear conditioning remains unknown [30]. A better under-

standing of the nature of this information would help to

explain the existence of these distinct forms of plasticity

in the LA.

In addition to the LA, the central nucleus of the amygdala

is also likely to be important for fear conditioning [30,35].

In a recent study, Samson and Paré [36�] discovered a

presynaptically expressed form of homosynaptic LTP at
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thalamic afferents onto medial sector neurons in the

central nucleus. The magnitude of LTP was significantly

reduced by global NMDAR antagonism, but internal

blockade of postsynaptic NMDARs had no effect, sug-

gesting that the crucial NMDARs are localized presynap-

tically. In agreement, postsynaptic hyperpolarization or

Ca2+ chelation did not reduce LTP. Although it is clear

that these presynaptic NMDARs are crucial for this form

of LTP in the central nucleus of the amygdala [36�],
whether or not they are involved in a mechanism of

presynaptic coincidence detection remains unknown.

Presynaptic coincidence detection in
neocortical spike-timing-dependent LTD
Although early studies investigated the role of timing

in plasticity [37–39], the acute sensitivity of synaptic

plasticity to the relative timing of pre- and postsynaptic

spikes was perhaps fully appreciated first in the study

of Markram et al. [14] on monosynaptically connected

neocortical layer 5 (L5) pyramidal pairs. Sjöström et al.
[16] subsequently found that L5 plasticity was deter-

mined not only by timing, but also by rate and coopera-

tivity, thereby demonstrating the existence of complex

nonlinear interactions between pre- and postsynaptic

spikes in STDP, reminiscent of those discovered later

in hippocampus and neocortical layers 2 and 3 (L2/3)

[40,41].

More recently, Sjöström et al. [27] investigated the

mechanisms underlying spike-timing-dependent LTD

(tLTD). Like LTP at L5-to-L5 synapses [42], tLTD

results in changes in short-term depression consistent

with a presynaptic locus of expression. Given that

tLTD requires both pre- and postsynaptic spiking

[14,16,27,43�], this finding implies the need for a retro-

grade messenger. In basal ganglia, in the amygdala, and at

inhibitory synapses of the hippocampus [44], retrograde

signalling in LTD is mediated by endocannabinoids.

Similarly, in the cerebellum, hippocampus and neocortex,

the short-term regulation of presynaptic release via

depolarization-induced suppression of inhibition and exci-

tation depends on retrograde endocannabinoid signalling

[45].

Indeed, pharmacological blockade of the endocannabi-

noid CB1 receptor (CB1R) abolishes tLTD in L5,

suggesting that the retrograde messenger is an endocan-

nabinoid [27]. Conversely, application of CB1R agonists

results in presynaptically expressed LTD that requires

high-frequency presynaptic but not postsynaptic firing

(Figure 2a). Intriguingly, like tLTD, the CB1R-agonist-

induced LTD is abolished by NMDAR antagonists

(Figure 2b), suggesting that the requirement for presy-

naptic activity arises from a need for presynaptic

NMDAR activation. In fact, anatomical evidence for both

presynaptic CB1Rs [46] and presynaptic NMDARs [24]

has been found in L5 of visual cortex. In addition,
www.sciencedirect.com
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Figure 2

Spike-timing-dependent LTD in neocortical L5 pyramidal neurons is

induced by the coincident activation of presynaptic NMDARs and

CB1Rs. (a) Application of a CB1R agonist (unbroken line) results in

depression that requires pre- but not postsynaptic activity [27].

(b) Depression induced by application of a CB1R agonist (unbroken line)

is abolished by application of an NMDAR antagonist (broken line) [27],

which, along with the data in (a), suggests that these NMDARs are

located presynaptically. These data also suggest that these NMDARs

are sensors for presynaptic activity, because application of the NMDAR

blocker itself results in reversible suppression of neurotransmission [27],

consistent with a presynaptic location of these NMDARs. (c) Model of

tLTD induction. Postsynaptic spiking releases endocannabinoids [43�],

which diffuses retrogradely (open arrow) to activate presynaptic CB1Rs;

by contrast, presynaptic spiking results in glutamate release (filled

arrow), which activates presynaptic NMDARs [27]. The simultaneous

activation of presynaptic CB1Rs and NMDA autoreceptors results in LTD

of glutamate release (grey arrow) by an unknown downstream molecular

pathway. Adapted, with permission, from [27].

www.sciencedirect.com
electrophysiological data suggest that presynaptic

NMDARs exist in L5 of entorhinal cortex [23].

In the most parsimonious model consistent with these

findings (Figure 2c), the coincident activation of presy-

naptic CB1Rs and NMDA autoreceptors results in

long-term reduction of neurotransmitter release. These

presynaptic CB1Rs thus detect postsynaptic activity,

whereas presynaptic NMDARs are sensors for presynap-

tic spiking. The details of the downstream molecular

mechanisms, however, remain unknown. Functionally,

this mechanism of coincidence detection might impart

synapse specificity to endocannabinoid signalling [27].

Endocannabinoid release induced by postsynaptic activ-

ity is often relatively global [47]; thus, without the tLTD

presynaptic coincidence requirement (Figure 2c), all

inputs might depress. In addition, because prolonging

postsynaptic activity [27,43�] or reducing endocannabi-

noid breakdown [27] increases the duration of the tem-

poral window of tLTD, this mechanism (Figure 2c) might

help to explain the timing requirements of tLTD [27].

The role of NMDARs in the model of tLTD in L5

(Figure 2c) is unorthodox: the well-known dual require-

ment of NMDARs for glutamate-binding and depolariza-

tion [6,7] does not appear to underlie this mechanism of

presynaptic coincidence detection. In fact, the tLTD

model (Figure 2c) suggests that very low-frequency

tLTD should not be possible, because — at inter-spike

intervals much longer than the NMDAR glutamate dis-

sociation time constant — presynaptic NMDARs become

glutamate-bound only after the presynaptic spike has

ended. Yet, tLTD is readily evoked at low frequencies

[27]. LTD induced by CB1R agonists, however, displays

the kind of frequency dependence predicted by the

model [27] (Figure 2c). Thus, the tLTD model is incom-

plete. A direct amplifying action of endocannabinoids

on NMDAR-mediated Ca2+ responses [48], or an addi-

tional, unknown retrograde signal would explain this

discrepancy. The retrograde messenger could transiently

depolarize presynaptic NMDARs; alternatively, postsy-

naptically released glutamate [49,50�] could provide the

missing retrograde signal, because it would ensure that

presynaptic NMDARs are glutamate-bound at the time of

the presynaptic action potential. Additional experiments

are required to find this missing piece of the tLTD

puzzle.

Postsynaptic NMDARs at many central synapses undergo

a gradual developmental switch from NR2B to a combi-

nation of NR2A and NR2B subunits [51,52]. Unlike

postsynaptic NMDARs at L5 to L5 synapses [52], how-

ever, presynaptic NMDARs have not undergone the

developmental switch from the NR2B to the NR2A

subunit at an age of 2–3 weeks. This implies that pre-

synaptically induced tLTD, but not postsynaptically

induced LTP, requires NR2B-containing NMDARs. In
Current Opinion in Neurobiology 2006, 16:312–322
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agreement with this idea, blockade of NR2B-containing

NMDARs specifically abolishes LTD without any appre-

ciable effect on LTP [27]. This specific expression of

presynaptic NR2B-containing NMDARs is similar to that

found in L2/3 and L5 of entorhinal cortex [23,53�],
although a role for entorhinal presynaptic NMDARs

and coincidence detection in plasticity has not been

demonstrated. At presynaptic terminals in entorhinal

cortex, NR2B-containing presynaptic NMDARs are

downregulated at a mature stage [53�]. Interestingly, this

developmental transition is reversed in a chronic epileptic

condition [53�], suggesting that presynaptic NMDARs

and, as a corollary, presynaptic coincidence detection

mechanisms may have a role in epileptogenesis.

Why is the coincidence detector for LTD presynaptic

(Figure 2c), when that for LTP is postsynaptic [14,27]?

To account for the typical existence of a single LTD

temporal window in STDP [10], computer modelling has

predicted the need for separate coincidence detectors in

LTP and LTD [54]. Interestingly, evidence for separate

coincidence detectors in classical rate-dependent LTP

and LTD has been recently found in the hippocampus

[55] and perirhinal cortex [56]. Similar to STDP in

neocortical L5 [27], the coincidence detector for LTD

is based on NR2B-containing NMDARs, whereas that for

LTP requires NMDARs containing the NR2A subunit

[55,56]. However because of the specificity of the phar-

macological agents used, results such as these [55,56]

should be interpreted with care [57,58]. Curiously, in

both perirhinal cortex and hippocampus, the coincidence

detectors for LTP and LTD are postsynaptic [55,56].

Recent results suggest that the faster kinetics of NR2A-

versus NR2B-containing NMDARs ensures that the for-

mer contribute more to LTP and the latter more to LTD

[59], although it remains possible that the two types of

NMDAR simply link to distinct downstream signalling

cascades. The existence of separate coincidence detec-

tors for LTP and LTD [27,55,56,58,60�] might turn out to

be a general principle in synaptic plasticity, although the

reasons why are unclear. Obviously, one way of having

such a division of coincidence detectors is to put one

presynaptically.

At many synapses, LTD can be induced by protocols

other than STDP, such as low-frequency stimulation [61]

or pairing of presynaptic spikes with subthreshold post-

synaptic depolarization (‘dLTD’) [62]. At some synapses,

the type of LTD induced depends on the induction

protocol used [10,21]. In a recent study, Sjöström et al.
[43�] investigated the mechanisms of low-frequency sti-

mulation and dLTD in neocortical L5 pairs. Surprisingly,

low-frequency stimulation resulted in no plasticity, per-

haps because these unitary synapses are weak [63] and

might not sufficiently activate postsynaptic NMDARs

[61]. Induction of dLTD, however, was robust [43�],
consistent with earlier findings at the same synapse
Current Opinion in Neurobiology 2006, 16:312–322
[16]. As assessed by the change in short-term plasticity

and coefficient of variation, dLTD, like tLTD, was

presynaptically expressed [27]. In addition, their identical

dependence on NR2B and time course of expression

along with occlusion suggest that dLTD and tLTD rely

on the same mechanism of presynaptic coincidence

detection (Figure 2c), which suggests, paradoxically, that

tLTD does not require postsynaptic spiking.

A puzzling aspect of this dLTD mechanism is that

endocannabinoid production is known to require micro-

molar increases in Ca2+ in some cell types, such as

Purkinje cells [64]. How, then, can subthreshold depolar-

ization evoke postsynaptic Ca2+ influx sufficient to stimu-

late endocannabinoid production? Perhaps low-threshold

Ca2+ channels, which are known to exist in L5 neurons [65],

are activated during the induction of dLTD. Alternatively,

there might be many pathways of endocannabinoid pro-

duction, some of which might require little or no Ca2+

influx [66]. Indeed, Ronesi and Lovinger [67�] have

recently discovered a novel form of endocannabinoid-

dependent striatal LTD that does not require postsynaptic

depolarization or Ca2+ influx.

Finally, although it seems unlikely that postsynaptic

NMDARs are involved in inducing LTD when they

are hyperpolarized [27] or at resting membrane potential

[27,43�], the possibility that postsynaptic NMDARs par-

ticipate in L5 tLTD cannot be excluded at present. In

fact, postsynaptically induced and expressed forms of

LTD are known to exist in L5 neurons [68,69] and

spike-mediated suppression of postsynaptic NMDARs

has been recently proposed to underlie STDP in neocor-

tical L2/3 [15]. Future experiments will be required to

investigate the possible involvement of postsynaptic

coincidence detection in L5 tLTD.

Presynaptic coincidence detection
in cerebellar LTD?
Cerebellar LTD at the parallel fibre to Purkinje cell

synapse is thought to underlie several forms of associative

learning [70] and depends on the relative timing of

parallel fibre and climbing fibre inputs [71,72]. In contrast

to other synapses that show Ca2+-dependent associative

plasticity, however, parallel fibre synapses lack postsy-

naptic NMDARs [73], and thus rely on alternative signal-

ling pathways for coincidence detection [72]. The locus of

parallel fibre LTD expression has been firmly established

as postsynaptic, requiring phosphorylation of AMPA

receptors and clathrin-mediated endocytosis [74].

A study by Casado et al. [26] has suggested, however, that

presynaptic NMDARs might have a crucial role in the

induction of parallel fibre LTD. The authors found that

parallel fibre LTD induced by conjunctive parallel fibre

stimulation and Purkinje cell depolarization at 1 Hz was

abolished by NMDAR blockade [26]. Because Purkinje
www.sciencedirect.com
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Figure 3

Hypothetical models of parallel fibre LTD. (a) Conjunctive

stimulation of parallel fibres and postsynaptic activity release the

endocannabinoid 2-AG [47,77��] and glutamate [26], which act on

presynaptic CB1Rs and NMDARs, respectively, to induce parallel fibre

LTD. NMDARs present on parallel fibre terminals function as presynaptic

coincidence detectors, requiring simultaneous glutamate binding and

depolarization for activation [26], whereas activation of CB1R promotes

the release of NO by an unknown pathway [77��]. In a hypothetical

model, these two independent pathways might converge at the

presynaptic terminal to create a novel form of presynaptic coincidence

detection at the synapses between parallel fibres and Purkinje cells,

perhaps similar to that observed in LTD in L5 [27] (Figure 2c).

(b) Recent work suggests that signalling cascades involved in the

induction of parallel fibre LTD might in fact be localized to interneurons

[78�]. As in (a), conjunctive parallel fibre stimulation and postsynaptic

activity release 2-AG [47,77��] and glutamate, which might act

on CB1Rs and NMDARs located on molecular layer interneurons

[22,50�,78�,79–81,99] to induce cerebellar LTD. The models

www.sciencedirect.com
cells do not possess functional NMDARs at this age

[73,75], the need for NMDAR activation in parallel fibre

LTD suggests that the relevant NMDARs might be

situated not on the postsynaptic side, but presynaptically

on parallel fibre terminals. In this view, presynaptic

NMDAR activation initiates nitric oxide (NO) production

in the parallel fibre terminal [76], and NO subsequently

triggers parallel fibre LTD in Purkinje cells [26]

(Figure 3a). In keeping with a need for presynaptic

NMDAR activation, which requires simultaneous gluta-

mate binding and depolarization, parallel fibre LTD was

evoked only when parallel fibre doublet stimuli were

paired with Purkinje cell depolarization, and not when

single parallel fibre stimuli were used. Moreover, record-

ings from pairs of synaptically connected granule cells and

Purkinje cells also displayed NMDAR-dependent LTD,

indicating that NMDARs present on or near parallel fibre

terminals function as coincidence detectors during the

induction of parallel fibre LTD [26] (Figure 3a).

Intriguingly, endocannabinoids have recently been impli-

cated in the induction of parallel fibre LTD [77��]. The

most compelling evidence for the involvement of endo-

cannabinoids arises from experiments conducted in

CB1R-deficient mice, in which conjunctive parallel fibre

and climbing fibre stimulation was ineffective at inducing

parallel fibre LTD [77��]. Although presynaptic

NMDARs and CB1Rs might induce parallel fibre LTD

independently, it is possible that parallel fibre LTD

induction requires the coincident activation of both types

of receptor. Such a mechanism would be similar to that

observed in LTD in neocortical L5 (Figures 3a and 2c)

[27], although the postsynaptic release of endocannabi-

noids from Purkinje cells might additionally require the

activation of a postsynaptic coincidence detection

mechanism (Figure 3) [47].

Although presynaptic NMDARs seem to be involved in

the induction of parallel fibre LTD [26], controversy

surrounds their exact location and function. Shin and

Linden [78�] recently reported that the NMDAR/NO

cascade involved in cerebellar LTD might be localized at

interneuron axon terminals rather than at parallel fibre

terminals. Their proposed mechanism involves the spil-

lover of glutamate from active parallel fibre terminals to

adjacent interneuron axon terminals, which have been

shown to possess functional NMDARs [22,50�,79,80].

The resultant NMDAR-mediated influx of Ca2+ would

activate neuronal NO synthase — which is expressed in

abundance in interneuron axon terminals [81] — thereby

releasing NO [78�] (Figure 3b). Interestingly, one

untested possibility is that direct parallel fibre stimulation

of molecular layer interneurons results in the activation of
in (a) and (b), although hypothetical, are based on published data

[26,77��,78�]. Abbreviations: PF, parallel fibre; IN, interneuron; PC,

Purkinje cell.

Current Opinion in Neurobiology 2006, 16:312–322
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extrasynaptic NMDARs [82], which would induce the

Ca2+-dependent release of NO. Recent results show that

even a single pulse of extracellular stimulation can evoke

a burst of parallel fibre action potentials [83]. Such a burst

of parallel fibre spikes might be sufficient to recruit

extrasynaptic NMDARs on interneurons [82] or to drive

the generation of action potentials in interneurons, thereby

releasing NO. So far, however, no direct link between the

production of NO by interneurons and the induction of

parallel fibre LTD has been established. These apparently

conflicting reports illustrate the difficulties involved in

identifying the exact location of the mechanisms under-

lying the induction of synaptic plasticity.

Presynaptic NMDARs and synaptic plasticity
without coincidence detection
In the classical view, activation of NMDARs requires

simultaneous glutamate binding and sufficient depolar-

ization to relieve the ion channels of Mg2+ blockade [6,7].

In recent years, however, it has been established that the

composition of NMDAR subunits has important implica-

tions for the biophysical properties of the receptor: in

some instances, glutamate binding alone is sufficient for

activation [22,75,84]. Indeed, several studies have shown

that NMDARs containing the NR2C and NR2D subunits

have reduced sensitivity to Mg2+ [80,85–90]. In the

cerebellum, presynaptic NMDARs present on inter-

neuron axon terminals [22,50�,79,80] have a pivotal role

in the induction of depolarization-induced potentiation of

inhibition (DPI) [50�]. This potentiation of inhibition is

evoked by repeated postsynaptic depolarization in a

manner reminiscent of depolarization-induced suppres-

sion of inhibition and excitation [45,47,77��]. In contrast

to the mechanism of Casado et al. [26] for inducing

presynaptic NMDAR-dependent parallel fibre LTD

(Figure 3a), DPI does not require coincident presynaptic

bursting, even though presynaptic NMDAR activation is

necessary [22,50�,80]. In conclusion, even though the

NMDAR is often viewed as a coincidence detector,

not all presynaptic NMDARs function as coincidence

detectors in synaptic plasticity.

Recently, presynaptic NMDAR-mediated enhancement

of synaptic transmission has been implicated in the

developmental maturation of the inhibitory neural net-

work of the cerebellar cortex [80], where it might mod-

ulate the interplay between excitation and inhibition.

Whether this effect of presynaptic NMDARs is trophic

or homeostatic, however, remains unclear. Nevertheless,

this study suggests that there is a morphological correlate

to DPI [80] and points to the developmental regulation of

both presynaptic NMDAR-dependent plasticity and DPI

[50�].

Conclusions and future directions
In the classical view of long-term plasticity, coincidence

detection occurs postsynaptically, typically through the
Current Opinion in Neurobiology 2006, 16:312–322
activation of NMDARs [3–5]. This view currently dom-

inates neuroscience, not only because postsynaptic coin-

cidence detection is unequivocally a key feature of

synaptic plasticity, but perhaps also because postsynaptic

manipulations are easier to achieve than presynaptic ones.

For example, the absence of a postsynaptic effect of a

drug manipulation, such as Ca2+ chelation or internal

NMDAR blockade, does not prove that the locus of a

mechanism is presynaptic — in principle, the mechanism

could be located elsewhere, as is suggested in cerebellar

parallel fibre LTD [78�] (Figure 3). The conclusive

elucidation of presynaptic mechanisms therefore requires

a combination of direct approaches, such as paired record-

ings [26,27], presynaptic Ca2+ imaging [78�], immunolo-

gical [24,25,46], molecular [4] or genetic tools [4,77��], or

electrophysiological recordings from presynaptic boutons

[80].

Although this list might seem daunting, it also means

encouragingly that the field is essentially wide open. The

number of identified presynaptic coincidence detection

mechanisms will no doubt grow, in particular because

mechanisms of presynaptic coincidence detection

[28] might coexist at synapses with more classical

mechanisms of postsynaptic induction [33]. Furthermore,

the downstream molecular mechanisms involved in pre-

synaptic coincidence detectors remain largely unexplored

[26–28]. In addition, recent studies have shown that

presynaptic NMDARs regulate neurotransmitter release

at several types of synapse, such as at spinal cord primary

afferents [91], in entorhinal cortex [53�], and at the

Schaffer collaterals and CA1 pathway of the hippocampus

[92,93]. Yet, the potential involvement of these presy-

naptic NMDARs in long-term plasticity has not been

investigated.

As illustrated throughout this review, presynaptic coin-

cidence detection offers several functional advantages. In

the amygdala, it provides an associative learning rule that

persists even in the absence of postsynaptic activity [28]

and that might prime relatively weak cortical inputs for

subsequent strengthening by other mechanisms [33]. At

neocortical L5 to L5 synapses, the dual need for CB1R

and NMDAR activation might endow tLTD with a

degree of synapse specificity to ensure that only active

inputs are depressed by endocannabinoid retrograde sig-

nalling [27]. In addition, the presynaptic coincidence

detection of tLTD in L5 might be a way of partitioning

LTD from LTP induction mechanisms [55,56,58,60�],
which might help to provide the temporal asymmetry that

is typical of STDP learning rules [10,20,54].

Although we have focused on NMDAR-based presynap-

tic mechanisms for coincidence detection, we are not

suggesting that mechanisms of presynaptic coincidence

detection need to rely on NMDARs. After all, postsy-

naptic coincidence detection can be based on NMDAR-
www.sciencedirect.com
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independent mechanisms, such as buffer saturation [94],

inositol 1,4,5-trisphosphate (IP3) receptors [72] and den-

dritic voltage-dependent ion channels [95,96]. Indeed,

evidence indicates that there might be a presynaptic

coincidence detector based on the glutamate receptor

mGluR7 at mossy fibre synapses onto hippocampal

CA3 interneurons [97]. Similarly, an NMDAR-indepen-

dent presynaptic coincidence detector in striatal LTD has

been proposed [98�]. In principle, any form of presynap-

tically expressed plasticity that requires simultaneous

activation of the postsynaptic neuron [27] or other cells

[28] is likely to rely, at least in part, on a presynaptic

coincidence detection mechanism. Unlike the plasticity

induction mechanisms themselves, this is no coincidence.

Update
In a recently published study, Lien et al. [100��] demon-

strated that light stimuli or theta burst stimulation of the

optic nerve in the developing Xenopus retinotectal system

induced LTP of glutamatergic inputs but LTD of

GABAergic inputs to the same tectal neuron. Although

both forms of plasticity were abolished by bath applica-

tion of the NMDAR antagonist D-APV — thus indicating

a pivotal role for NMDARs during plasticity induction —

only LTP of excitatory afferents was abolished after

infusing the tectal cell with the antagonist MK-801, which

selectively blocks postsynaptic NMDARs. Similarly,

postsynaptic hyperpolarization or postsynaptic loading

of the rapid Ca2+ chelator BAPTA-AM prevented the

induction of excitatory LTP but had no effect on LTD at

inhibitory synapses. The authors conclude that high-

frequency theta burst stimulation results in spillover of

glutamate onto NMDARs on adjacent interneuron axon

terminals, and that coincident high-frequency inter-

neuron firing activates these presynaptic NMDARs,

which triggers the induction of GABAergic LTD.

This elegantly executed study provides the first in vivo
evidence for the involvement of presynaptic NMDARs in

coincidence detection and synaptic plasticity. In addition,

Lien et al. [100��] propose that these presynaptic

NMDARs play an important role in the developmental

fine-tuning of the retinotectal system: the activation

of presynaptic NMDARs serves to locally dampen

inhibitory synaptic input, which facilitates Hebbian

plasticity at excitatory inputs and which might lead to

a ‘winner-takes-all’ form of competition among retino-

tectal afferents.

In another recent paper, Bender et al. [60�] study STDP in

L2/3 neurons using extracellular stimulation in layer 4.

They find that presynaptically expressed tLTD requires

the activation of putatively presynaptic NMDARs and

CB1Rs, because postsynaptic hyperpolarization or load-

ing with the NMDAR antagonist MK801 does not abolish

tLTD. At first glance, this mechanism appears similar to

that proposed for tLTD at unitary L5-to-L5 connections
www.sciencedirect.com
(Figure 2c) [27], but Bender et al. [60�] found that

NMDAR blockade only abolished L2/3 tLTD if it began

10 minutes or more prior to the induction stimulus (cf.

Figure 2b) [27]. In addition, CB1 agonist application

evoked LTD in L2/3 neurons regardless of presynaptic

frequency, an observation that was not made in L5

neurons [27]. Perhaps the L2/3 presynaptic NMDARs

have reduced Mg2+ blockade and do not require depolar-

ization for activation (cf. [50�]). Regardless, the L2/3 and

L5 tLTD induction mechanisms thus appear to be dis-

similar [27].

Bender et al. [60�] also provide evidence for a postsynaptic

coincidence detection mechanism for L2/3 tLTD, which

relies on IP3 receptors to detect the simultaneous activa-

tion of mGluR5s and voltage-dependent calcium chan-

nels. Although in principle this postsynaptic mechanism

for tLTD induction does not preclude the co-existence of

a presynaptic coincidence detection mechanism, it does

seem to be at odds with an earlier study implicating

postsynaptic NMDARs in L2/3 tLTD [15].
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10. Sjöström PJ, Nelson SB: Spike timing, calcium signals
and synaptic plasticity. Curr Opin Neurobiol 2002,
12:305-314.
Current Opinion in Neurobiology 2006, 16:312–322



320 Signalling mechanisms
11. Hansel C, Artola A, Singer W: Relation between dendritic Ca2+

levels and the polarity of synaptic long-term modifications in
rat visual cortex neurons. Eur J Neurosci 1997, 9:2309-2322.

12. Cummings JA, Mulkey RM, Nicoll RA, Malenka RC: Ca2+ signaling
requirements for long-term depression in the hippocampus.
Neuron 1996, 16:825-833.

13. Koester HJ, Sakmann B: Calcium dynamics in single spines
during coincident pre- and postsynaptic activity depend on
relative timing of back-propagating action potentials
and subthreshold excitatory postsynaptic potentials.
Proc Natl Acad Sci USA 1998, 95:9596-9601.
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