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Abstract Understanding cortical function requires studying its multiple scales: molecular,16

cellular, circuit and behavior. We developed a biophysically detailed multiscale model of mouse17

primary motor cortex (M1) with over 10,000 neurons, 30 million synapses. Neuron types,18

densities, spatial distributions, morphologies, biophysics, connectivity and dendritic synapse19

locations were derived from experimental data. The model includes long-range inputs from 720

thalamic and cortical regions, and noradrenergic inputs from locus coeruleus. Connectivity21

depended on cell class and cortical depth at sublaminar resolution. The model reproduced and22

predicted in vivo layer- and cell type-specific responses (firing rates and LFP) associated with23

behavioral states (quiet and movement) and experimental manipulations (noradrenaline24

receptor blocking and thalamus inactivation), and enabled us to evaluate different hypotheses of25

the circuitry and mechanisms involved. This quantitative theoretical framework can be used to26

integrate and interpret M1 experimental data and sheds light on the M1 cell type-specific27

multiscale dynamics associated with a range of experimental conditions and behaviors.28

29

Introduction30

Understanding cortical function requires studying its components and interactions at different31

scales: molecular, cellular, circuit, system and behavior. Biophysically detailed modeling provides32

a tool to integrate, organize and interpret experimental data at multiple scales and translate iso-33

lated knowledge into an understanding of brain function. Previous approaches have emphasized34

structural aspects based on layers and the broad classification of excitatory and inhibitory neurons35

(Potjans and Diesmann, 2014; Douglas et al., 1989). Modern anatomical, physiological and genetic36

techniques allow an unprecedented level of detail to be brought to the analysis and understanding37

of cortical microcircuits (Luo et al., 2018; Adesnik and Naka, 2018). In particular, several neuron38
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classes can now be identified based on distinct gene expression, morphology, physiology and con-39

nectivity. Cortical excitatory neurons are broadly classified by their axonal projection patterns into40

intratelencephalic (IT), pyramidal-tract (PT) and corticothalamic (CT) types (Greig et al., 2013;Harris41

and Shepherd, 2015; Zeng and Sanes, 2017). Recent research has also revealed that connections42

are cell-type and location specific, often with connectivity differences at different cortical depths43

within layers (Anderson et al., 2010; Brown and Hestrin, 2009;Morishima and Kawaguchi, 2006).44

Primary motor cortex (M1) plays a central role in motor control, but has to date only been45

modeled to a limited extent (Chadderdon et al., 2014; Neymotin et al., 2016b; Heinzle et al., 2007;46

Morishima et al., 2011). We and others have extensively studiedmouseM1 circuits experimentally,47

and characterized cell subclasses andmany cell-type and sublaminar-specific local and long-range48

circuit connections (Papale and Hooks, 2017; Shepherd, 2009; Kaneko, 2013). A major focus of49

these anatomical and physiological studies has been the distinct cell classes of layer 5 (L5): L5B PT50

cells – the source of the corticospinal tract, and other pyramidal tract projections, and L5 IT cells51

which project bilaterally to cortex and striatum. Morphology and physiology differs across the two52

types. L5 IT cells are thin-tufted and show spike frequency adaptation. L5B PT cells are thick-tufted53

and show little spike frequency adaptation, but strong sag potentials. In terms of their synaptic54

interconnectivity these types exhibit a strong asymmetry: connections go from IT to PT cells, but55

not in the opposite direction (Kiritani et al., 2012;Morishima and Kawaguchi, 2006). The strength56

of their local excitatory input connections is also dependent on PT position within layer 5B, with57

cells in the upper sublayer receiving the strongest input from layer 2/3 (Anderson et al., 2010;Hooks58

et al., 2013; Yu et al., 2008; Weiler et al., 2008). These and several other highly specific local and59

long-range wiring patterns are likely to have profound consequences in terms of understanding60

cortical dynamics, information processing, function and behavior (Li et al., 2015b).61

A key unanswered question in the motor system, and more generally in neural systems (Mott62

et al., 2018; Hsu et al., 2020), is how cell and circuit dynamics relate to behavior. Both IT and PT63

cell types play a role in motor planning and execution and both have been implicated in motor-64

related diseases (Shepherd, 2013). We have previously shown that the hyperpolarization-activated65

current (𝐼h), a target of noradrenergic neuromodulation, is highly expressed in PT cells and affects66

its synaptic integration and electrophysiological properties (Sheets et al., 2011). In vivo studies67

also reveal noradrenergic neuromodulatory inputs from locus coeruleus (LC) and long-range in-68

puts from thalamus and cortex causally influence M1 activity and behavioral states (Boychuk et al.,69

2017; Schiemann et al., 2015; Guo et al., 2021). Specifically, blocking noradrenergic input to M1 im-70

paired motor coordination (Schiemann et al., 2015), and disrupting the cerebellar-recipient motor71

thalamus projections to M1 can impair dexterity (Guo et al., 2021) or block movement initiation72

(Dacre et al., 2021). These modulatory and long-range projections have been shown to be cell73

type-specific, and characterized in ex vivo slice experiments (Sheets et al., 2011; Yamawaki and74

Shepherd, 2015;Hooks et al., 2013; Suter and Shepherd, 2015), but how these relate to in vivo activ-75

ity, including the exact cellular and circuit mechanisms underpinning behavioral state-dependent76

M1 activity, remain largely unknown. A biologically realistic model of M1 can be used to address77

this current knowledge gap by generating hypotheses and predictions relating circuit dynamics to78

function and behavior.79

We have now developed a multiscale model of mouse M1 incorporating recent experimen-80

tal data and reproducing in vivo layer- and cell type-specific behavior-dependent responses. The81

model simulates a cylindric cortical volumewith over 10 thousandneurons and 30million synapses.82

We attempted, as far as possible, to base parameters on data obtained from a single species, strain83

and age range, and from our own experimental work. However, these data are necessarily incom-84

plete, and we have therefore combined additional data from multiple other sources. We focused85

particularly on the role of L5 excitatory neurons, utilizing detailed models of layer 5 IT and PT86

neurons with full dendritic morphologies of 700+ compartments based on anatomical cell recon-87

struction and ionic channel distributions optimized to in vitro experimental measures. The task of88

integrating experimental data into the model required us to develop several novel methodological89
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techniques for network simulation design, including: 1) specifying connections as a function of nor-90

malized cortical depth (NCD) – from pia to white matter – instead of by layer designations, with a91

100-150 𝜇𝑚 resolution; 2) identifying and including specific dendritic distributions associated with92

particular inputs using features extracted from subcellular Channelrhodopsin-2-Assisted Circuit93

Mapping (sCRACM) studies (Hooks et al., 2013; Suter and Shepherd, 2015); and 3) utilizing a high-94

level declarative modeling tool, NetPyNE, to develop, simulate, optimize, analyze and visualize the95

model (Dura-Bernal et al., 2019).96

OurM1model exhibited neuronal firing rates and oscillations that depended on cell class, layer97

and sublaminar location, and behavioral state, consistent with in vivoM1 data. Behavioral changes98

(quiet vs movement) were modeled by modifying noradrenergic inputs from LC and motor thala-99

mus inputs. Our cortical model also captured the effects of experimental manipulations, including100

blocking of NA receptors and motor thalamus inactivation. The model provided different multi-101

scale mechanistic hypotheses for the observed behavioral deficits, linking noradrenaline blockade102

to cell type specific changes in 𝐼h and/or potassium conductances and the consequent changes in103

neuronal firing patterns. The simulations generated experimentally-testable quantitative predic-104

tions about layer- and cell type-specific responses for the different behavioral states and experi-105

mental manipulations. They also shed new light on the M1 circuitry and biophysical mechanisms106

associated with dynamic aspects of behavior-related activity, including physiological oscillations107

and neuromodulation. We are making our model freely available as a community resource so that108

others can update and extend it, incorporating new data such as that from the M1multimodal cell109

census and atlas recently released by the BRAIN Initiative Cell Census Network (Network, 2021).110

Results111

Overview of model development and simulations112

We implemented a biophysically-realistic model of the mouse M1microcircuit representing a cylin-113

drical volume of 300 𝜇𝑚 diameter (Fig. 1). The model included over 10,000 neurons with 35 million114

synapses. Cell properties, locations, and local and long-range connectivity were largely derived115

from a coherent set of experimental data. Available experimental data was particularly detailed116

for two L5 populations that were the focus of this study: pyramidal tract (PT) corticospinal cells117

and intratelencephalic (IT) corticostriatal cells. One innovative feature in the network presented118

here was the inclusion of a Layer 4 for motor cortex, consistent with its recent characterization119

(Yamawaki et al., 2015; Bopp et al., 2017; Barbas and García-Cabezas, 2015; Network, 2021). The120

model was developed using the NetPyNE(Dura-Bernal et al., 2019) modeling tool and the NEURON121

simulation engine (Carnevale and Hines, 2006). Over 20,000 simulations were required to progres-122

sively construct and improve the model. Simulations required over 8 million high performance123

computing (HPC) cluster core-hours to arrive at the results shown, primarily during model build-124

ing. One second of simulation (model) time required approximately 96 core-hours of HPC time.125

We employed a grid search on underconstrained connectivity parameters – e.g. inhibitory to exci-126

tatory weights – to identify simulations that produced physiologically realistic firing patterns across127

populations.128

As expected from results in other systems, there was no single “right” model that produced129

these realistic firing patterns but rather a family of models (degenerate parameterization) that130

were within the parameter ranges identified by experiment (Golowasch et al., 2002; Prinz and131

Marder, 2003; Edelman and Gally, 2001). From these, we selected one base model, representing132

a single parameter set, to illustrate in this paper. This base model was tested for robustness by133

changing randomization settings to provide a model set, with analysis of raw and average data134

from 25 simulations: 5 random synaptic input seeds × 5 random connectivity seeds (based on135

connectivity density). This can be considered analogous to testing multiple trials and subjects in136

an experimental setup. The full model set showed qualitatively similar results with low variance in137

bulk measures (population rates, oscillation frequencies) for changes in randomization settings.138
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Figure 1. M1 microcircuit model 3D visualization, connectivity, dimensions, and neuronal densities,
classes and morphologies. A. (left panel: Epifluorescence image of a coronal brain slice of mouse showing
M1 and S1 regions, and approximate anatomical location and volume of simulated cylindrical tissue adapted
from (Suter et al., 2013)). middle and right panels 3D visualization of M1 network, showing location and stylized
morphologies of 20% of excitatory IT (red), PT (blue) and CT (green) cells, and snapshot of simulated activity
with spiking neurons in brighter color (visualization by nicolasantille.com). B. Cell classes modeled. IT5A and
PT5B neurons are simulated in full morphological reconstructions. Other excitatory types and inhibitory
neurons use simplified models with 2-6 compartments. All models are conductance-based with multiple ionic
channels tuned to reproduce the cell’s electrophysiology. C. Dimensions of simulated M1 cylindrical volume
with overall cell density per layer designation (left), and cell types and populations simulated (right). D.
Schematic of main local and long-range excitatory connections (thin line: medium; thick line: strong). Note
the unidirectional projections from ITs to PTs, with a particularly strong projection arising from L2/3. (IT:
intratelencephalic cells – corticostriatal; PT: pyramidal-tract cells – corticospinal; CT corticothalamic cells. PO:
posterior nucleus of thalamus; VL: ventrolateral thalamus; S1: primary somatosensory; S2: secondary
somatosensory; cM1: contralateral M1; M2: secondary motor; OC: orbital cortex; PV: parvalbumin basket
cells, SOM: somatostatin interneurons; number of cells in each population shown in brackets; left shows
L1–L6 boundaries with normalized cortical depth – NCD from 0 = pia to 1 = white matter.)
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We used the base model and model set to characterize firing and local field potential (LFP)139

patterns in response to different levels of long-range inputs and noradrenergic (NA) neuromodu-140

lation associated with different behavioral states and experimental manipulations of mouse M1141

in vivo (Schiemann et al., 2015) (see Table 1). The two behavioral states corresponded to quiet142

wakefulness and self-paced, voluntarymovement. Each of these states was simulated under three143

different experimental manipulations: control, motor thalamus inactivation (MTh inactivation) and144

blocking input from LC via noradrenergic receptor antagonists (NA-R block). The effect of changes145

in noradrenergic neuromodulation, driven by inputs from locus coeruleus (LC), were simulated146

by altering 𝐼h conductance in PT cells (see Table 1 and Methods), consistent with in vitro findings147

(Sheets et al., 2011; Adesnik and Naka, 2018). Results are presented both in terms of cell class and148

cell population. We focused on three excitatory classes: intratelencephalic (IT), pyramidal-tract (PT),149

corticothalamic (CT); and two inhibitory classes: parvalbumin-staining fast-spiking basket cells (PV),150

somatostatin-staining, low-threshold spiking cells (SOM). Cell populations are defined by both class151

and by layer (e.g. IT5A indicates class IT in layer 5A; CT6 is class CT in layer 6). We use our results152

to explain and predict the response of the M1 circuit under the different behavioral states and153

experimental manipulations simulated.154

Experimental manipulation Behavioral State MTh input (VL) NA input (PT 𝐼h)
Control Quiet Low (0-2.5 Hz) Low NA (75% 𝐼h)
Control Movement High (0-10 Hz) High NA (25% 𝐼h)
MTh inactivation Quiet Very low (0-0.01 Hz) Low NA (75 % 𝐼h)
MTh inactivation Movement Very low (0-0.1 Hz) High NA (25% 𝐼h)
NA-R antagonist Quiet Low (0-2.5 Hz) Very low (100% 𝐼h)
NA-R antagonist Movement High (0-10 Hz) Very low (100% 𝐼h)

Table 1. Motor thalamus (MTh) input and noradrenergic (NA) input associated with the different
experimental manipulations and behavioral states simulated in the M1 model. NA input is modeled by
modifying the conductance of PT 𝐼h.

M1 firing dynamics during quiet wakefulness (spontaneous activity)155

We characterized in vivo spontaneous activity in the base model. This was simulated based on156

expected background drive of ≤5 Hz from all long-range inputs, and low NA input resulting in157

medium level 𝐼h (75%) in PT cells (Fig. 2) (Yamashita et al., 2013; Hirata and Castro-Alamancos,158

2006). These properties were consistent with the quiet wakefulness state and control conditions159

as recorded by whole-cell patch-clamp electrophysiology in awake mice in vivo (Schiemann et al.,160

2015). We validated the M1 model cell type- and layer-specific firing rates against available in vivo161

experimental data from mouse motor cortex (Schiemann et al., 2015; Zagha et al., 2015; Li et al.,162

2016; Estebanez et al., 2018; Economo et al., 2018) (Fig. 2𝐵). All populationmean andmedian firing163

rates ranged between 0.1 and 10 Hz, andmaximum rates (excluding outliers) were below 35Hz, for164

both model and experiment. More specifically, we compared L2/3 IT (median±IQR model=1.8± 4.0165

Hz, exp=0.3 ± 0.7 Hz), L5B IT (model=6.5 ± 8.8 Hz, exp=3.2 ± 2.5 Hz), L5B PT (model=1.8 ± 4.8 Hz,166

exp=4.6 ± 4.6 Hz). Since certain studies did not distinguish between cell types or sublayers we167

also compared L5B IT/PT (model=4.8 ± 8.5 Hz, exp=5.1 ± 6.0 Hz) and L5 IT/PT (model=5.5 ± 9.2 Hz,168

exp1=1.7 ± 4.0 Hz, exp2=7.6 ± 8.5 Hz, exp3=2.4 ± 4.7 Hz). Significant statistical differences among169

population firing rates fromdifferent studies are expected, and therefore thesewere also expected170

between model and experiment. An example is L5 IT/PT where two experimental datasets were171

statistically significantly different (exp1=1.7 ± 4.0 Hz, exp2=7.6 ± 8.5 Hz; 𝑝 = 6.2e−15, rank-sum test),172

whereas this was not the case when comparing the L5B IT/PTmodel to experiment (model=5.5±9.2173

Hz, exp2=7.6±8.5Hz 𝑝 = 0.43, rank-sum test). Overall, these results indicate that model activity was174

consistent with in vivo mouse data.175
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Figure 2. M1 cell type and layer-specific firing dynamics during quiet wakefulness state and control
condition (spontaneous activity) The quiet state was simulated by driving the network with background
activity (≤ 5 Hz) from all long-range inputs, and medium level 𝐼h (75%) in PT cells (low NA modulation). A. Top:
Raster plot of mid-simulation activity (2s of base model simulation shown; cells grouped by population and
ordered by cortical depth within each population). Bottom: Example model (blue) and experiment (black)
PT5B voltage traces. B. Firing rates statistics (boxplots) for different cell types and layers in the model set
(color bars) and experiment (gray bars).
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Activity patterns were not only dependent on cell class and cortical-layer location, but also sub-176

laminar location. This supports the importance of identifying connectivity and analyzing activity by177

normalized cortical depth (NCD) in addition to layer (Harris and Shepherd, 2015; Anderson et al.,178

2010). For example, PT cell activity was particularly high superficially in L5B, with firing rates de-179

creasing with cortical depth (Fig. 2𝐴), consistent with depth-weighted targeting from L2/3 IT pro-180

jections (Anderson et al., 2010; Weiler et al., 2008). This pattern of firing was consistent across181

network variations with different wiring and input randomization seeds. L5A/B IT exhibited similar182

cortical-depth dependent activity. L2/3 and L4 IT populations showed overall lower rates than L5183

IT, consistent with weaker projections onto these populations from local M1 (Weiler et al., 2008;184

Yamawaki et al., 2015), and from long-range inputs (Mao et al., 2011; Suter and Shepherd, 2015; Ya-185

mawaki et al., 2015). In particular, the main source of L4 IT input was thalamic, in correspondence186

with the well-described pattern in sensory cortex (Yamawaki et al., 2015). Despite the weaker re-187

sponse, L2/3 IT showed slow oscillatory activity around delta frequency. Within L6, superficial cells188

of IT and CT populations were more active than deeper ones. This was due to stronger intralam-189

inar, L5B IT (Weiler et al., 2008; Yamawaki and Shepherd, 2015) and long-range inputs, primarily190

from orbital and contralateral motor cortices (for more details on model connectivity see Methods191

Fig. 8) (Hooks et al., 2013). Weaker local projections onto L6 CT compared to L6 IT resulted in firing192

rate differences between CT and IT.193

M1 firing dynamics during movement194

The model reproduced experimental cell type-specific dynamics associated with movement. The195

movement state was simulated by increasing long-range inputs from ventrolateral thalamus (VL;196

also calledmotor thalamus, MTh) to 0-10 Hz (uniform distribution), and reducing 𝐼h conductance to197

25% in PT cells, to simulate high NA neuromodulatory inputs from LC. The remaining 6 long-range198

inputs (PO, S1, S2, cM1, M2, OC) continued to provide background drive (≤ 5Hz). This resulted in199

a large increase in L5B PT activity and the development of a strong gamma oscillation (Fig. 3A).200

PT5Blower neurons, which were largely silent during the quiet state, now exhibited similar activity to201

PT5Bupper . This is consistent with the involvement of PT (Anderson et al., 2010; Peters et al., 2017;202

Kiritani et al., 2012), and particularly PT5Blower (Economo et al., 2018), in motor control. During203

movement, the activity of L2/3 IT and L5 IT decreased moderately, whereas L4 IT, L6 IT and L6 CT204

firing rates remained similar. There was a transition period from quiet to movement that lasted205

approximately 500ms, during which there was a peak in the activity of L5 IT and PT5Bupper , consis-206

tent with VL efferent projections. This transitory activity peaks could also be seen in most of the207

remaining model set simulations. Although IT2/3 exhibited a similar transition peak in the base208

model, this was not apparent in other model set simulations, suggesting this could have resulted209

from the ongoing L2/3 IT delta oscillations.210

Model firing rate distributions were generally consistent with experimental data across popu-211

lations and behavioral states. We compared the quiet and movement population firing rates of212

the model set against M1 in vivo experimental data (Schiemann et al., 2015) (Fig. 3B). Both model213

and experiment L2/3 IT cells exhibited low firing rates during both quiet (mean±SDmodel: 1.6±3.9214

Hz; exp: 0.6 ± 0.7 Hz) and movement states (mean±SD model: 0.7 ± 2.8 Hz; exp: 0.6 ± 1.1 Hz). The215

L5B rates, including both IT and PT, were similar in model and experiment and exhibited a similar216

increase from quiet (model 4.1 ± 5.5 Hz; exp 5.9 ± 3.9 Hz) to movement (model: 6.9 ± 9.7 Hz; exp:217

8.4 ± 7.5 Hz). Following the experimental study data analysis (Schiemann et al., 2015), we com-218

pared rates of cells that exhibited enhanced or suppressed activity from quiet to movement. Both219

L5Benhanced and L5Bsuppressed rates exhibited comparable trends in model and experiment. The quiet220

state L5Benhanced mean±SD rates were higher in the model than experiment (model: 1.5±3.6 Hz, exp:221

5.1±4.0Hz) but increased to a similar rate duringmovement (model: 13.2±11.1Hz, exp: 11.3±7.7Hz).222

L5Bsuppressed model and experiment rates exhibited a similar decrease from quiet (model: 7.5 ± 5.7223

Hz, exp: 5.0 ± 4.2 Hz) to movement states (model: 2.0 ± 3.1, exp: 2.3 ± 2.7 Hz). L5B IT quiet mean224

± SD rates were higher for model vs experiment (model: 6.7 ± 5.9 Hz, exp: 3.5 ± 2.3 Hz) but also225
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Figure 3. M1 cell-type and layer-specific firing dynamics during the quiet and movement states under
the control condition. The movement state was simulated by driving the network with increased activity
(0-10Hz) from motor thalamus, background activity (≤5Hz) from the 6 remaining long-range inputs, and
reducing 𝐼h to 25% in PT cells (high NA modulation). A.Top: Raster plot of activity transitioning from quiet (1s)
to movement (4s) to quiet (1s) states (6s of base model simulation shown; cells grouped by population and
ordered by cortical depth within each population). Bottom: Example model PT5B (blue) and experiment
(black) voltage traces. B. Firing rate (mean±SD) in different cell populations for model set (blue) and
experiment (orange). Model set includes cell rates of all 25 simulations; the mean rates of each individual
simulation shown as thin blue lines. Statistics were computed across 4 secs for each state.
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decreased to a similar level during movement (model: 1.9 ± 3.3 Hz, exp: 2.4 ± 2.3 Hz). Model L5B PT226

rates increased sharply from quiet (1.5 ± 3.6 Hz) to movement (11.9 ± 11.3 Hz). We did not include227

experiment PT rates in Fig. 3B given their small sample size (N=3) and high variability. Instead, for228

reference, we included the L5B rates, which include both IT and PT. However, we note that two229

of the experiment PT cells showed a decrease from quiet to move (16.0 Hz to 5.6 Hz and 4.7 Hz230

to 0.6 Hz), and one showed a similar sharp increase to that of the model (3.5 Hz to 13.2 Hz). The231

robustness of the model was evidenced by the small variability across the mean firing rates of the232

25 simulations in the model set, each with different randomization seeds (see thin blue lines in233

Fig. 3B).234

M1 layer 5 LFP oscillations depend on behavioral state235

We compared M1 layer 5 LFP signals during quiet and movement states in the model and experi-236

mental datasets (Fig. 4). Importantly, the model was not tuned to reproduce the experiment LFP237

during the quiet ormovement states. Despite this, LFP amplitude were similar inmodel and experi-238

ment (order of 500 𝜇𝑉 ). In both experiment andmodel, the L5 LFP showedweaker slow oscillations239

(delta) and stronger fast oscillations (gamma) during movement vs quiet behavioral states. This is240

illustrated in the raw LFP signal and spectrogram examples for experiment and model (Figure 4A241

for quiet and 4B for movement). Model L5 LFP was averaged across the signals recorded from sim-242

ulated extracellular electrodes at 3 depths within L5: 600um (L5A), 800um (upper L5B) and 1000um243

(lower L5B). The experimental LFP dataset was recorded in vivo from L5 extracellular electrodes244

and preprocessed to remove outliers and potential artifacts (see Methods).245

Figure 4. M1 layer 5 LFP oscillations during the quiet and movement states. Example experiment and
model raw LFP signals (top) and spectrograms (middle) during the quiet (A) and movement (B) states. C.
Comparison of experiment and model normalized power spectral density (PSD) power across 5 frequency
bands during quiet and movement states. D. Comparison of experiment and model changes in normalized
power spectral density (PSD) power across 5 frequency bands during quiet and movement states .

The model reproduced behavioral-dependent differences across different frequency bands of246

M1 LFP oscillations. To quantify these differences we calculated the LFP normalized power spec-247

tral density (PSD) across the major frequency bands for the experimental and modeling datasets248

(Fig. 4C). To enable comparison, we segmented the experimental data in 4-second samples, match-249

ing the duration of the model dataset samples. Both experiment and model datasets exhibited250

stronger LFP power at the lower end of the spectrum (delta, theta and alpha bands) during the251

quiet state, and stronger high-frequency (gamma) LFP power during movement. More specifically,252

delta (0-4 Hz) power in the quiet state was high in both model vs experiment (median±IQR: model:253

0.39 ± 0.16; exp: 0.21 ± 0.11) but decreased to a similar level during movement (model: 0.06 ± 0.09;254
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exp: 0.06 +−0.04). Theta (4-8 Hz) power was overall higher in experiments compared to the model,255

but in both cases showed higher amplitude in the quiet vs movement states . A similar pattern256

was observed for the LFP alpha (8-13 Hz) power (model: 0.02 ± 0.01 vs 0.01 ± 0.02; exp:0.12 ± 0.05257

vs 0.07 ± 0.03). Beta power (13-30 Hz) remained largely stable from quiet to movement states, and258

exhibited very similar values for experiment and model (model: 0.18 ± 0.08 and 0.18 ± 0.08; exp:259

0.20 ± 0.07 and 0.18 ± 0.03). Gamma power (30-80 Hz) was stronger during movement for both260

experiment and model (model: 0.36 ± 0.15 and 0.72 ± 0.14; exp: 0.23 ± 0.11 and 0.58 ± 0.11).261

The model also reproduced the main changes in LFP power from quiet to movement states262

when looking at paired samples occurring within the same recording. In the previous comparison,263

the experimental dataset included a larger number of 4-second samples for the quiet (N=3890)264

than movement (N=2840) states. These were obtained from 30 recordings from different animals,265

trials and recording sites within L5. In order to more directly quantify the change in LFP power266

from quiet to movement, we selected the subset of paired 4-second quiet andmovement samples267

that occurred consecutively within the same recording. We then calculated the change in normal-268

ized LFP PSD for the resulting 160 pairs of consecutive quiet and movement samples (Fig. 4D).269

Both model and experiment showed results consistent with the previous analysis: from quiet to270

movement there was 1) a strong decrease of delta frequency power during movement (model:271

−0.32±0.19; exp: −0.16±0.14); 2) small changes in theta, alpha and beta power; and 3) large increase272

in gamma power (model: 0.39 ± 0.18; exp: 0.38 ± 0.08). These results provide further validation that273

the model is capturing behavior-related oscillatory dynamics observed in mouse M1 in vivo.274

M1 dynamics during motor thalamus inactivation275

To gain insights into the known role of thalamic inputs in regulating M1 output (Guo et al., 2021;276

Dacre et al., 2021) we simulated an experimentalmanipulation described in our in vivo study (Schie-277

mann et al., 2015), consisting of blocking thalamic input by local infusion of the 𝐺𝐴𝐵𝐴𝐴 receptor278

agonist muscimol into the VL region. Our computational model captured several features of in-279

activating motor thalamus (MTh) inputs to M1. The MTh inactivation condition was simulated by280

removing the VL input, thus driving the network with the remaining 6 long-range background in-281

puts (PO, cM1, M2, S1, S2, OC). Under this condition, the change from quiet to movement states282

only involved reducing 𝐼h conductance from 75% to 25% in PT cells, simulating high NA neuromod-283

ulatory inputs from LC. In themodel, themajor changes under the thalamus inactivation condition284

were observed during the movement state (Fig. 5A,B): a decrease in overall L5B activity (control:285

6.9 ± 9.7 Hz, MTh inact: 4.00 ± 5.7 Hz) consistent with experiment (control: 8.4 ± 7.5 Hz, MTh inact:286

2.2±4.0Hz). Similarly, themodel captured the strong reduction of MTh inactivation in the L5Benhanced287

population during movement (model control: 13.3 ± 11.1 Hz, MTh inact: 6.3 ± 7.1 Hz; exp control:288

11.3±7.7, MTh inact: 4.2±4.9). The decrease in themodel L5B rateswas caused by a strong reduction289

of PT rates (control: 11.9±11.3Hz, MTh inact: 2.9±6.0Hz). MTh inactivation resulted in a particularly290

strong reduction of the movement-associated PT5Blower population, which was practically silenced.291

However, results suggested that the model was not adequately capturing some effects of MTh292

inactivation on M1 L5B, particularly during the quiet state. Specifically, MTh inactivation lead to293

a reduction of quiet state L5B (control: 5.1 ± 3.9 Hz, MTh inact: 1.1 ± 1.1), as well as L5Bsuppressed,294

which was not observed in our model, where these two populations rates remained similar. We295

hypothesized this could be due to the lack of interaction between long-range inputs in the model,296

preventing it from capturing the effects of MTh inactivation on other regions (e.g. M2) that in turn297

provide input to M1 (see Discussion for more details and alternatives). To evaluate this hypothesis298

we modified our original model of MTh inactivation by reducing the activity of other cortical long-299

range inputs (cM1, M2). The modified model better reproduced experimental L5B and L5Bsuppressed300

results, including those during the quiet state (see Fig. 5B purple lines), supporting our hypothesis301

of the circuitry involved in the MTh inactivation condition.302
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Figure 5. M1 cell-type and layer-specific firing dynamics during the quiet and movement states for the
MTh inactivation (A and B) and the NA-R block (C and D) conditions. A. and C. Top: Raster plot of activity
transitioning from quiet (1s) to movement (2s) (3s of base model simulation shown; cells grouped by
population and ordered by cortical depth within each population). Bottom: Example model PT5B (blue) and
experiment (black) voltage traces. B. and D. Firing rate (mean±SD) in different cell populations for the original
model set (blue), modified model (purple) and experiment (orange). The modified model decreased
long-range inputs from cM1 and M2 for the MTh inactivation condition, and increased K+ conductance for the
NA-R block condition. The original model set includes cell rates of all 25 simulations; the mean rates of each
individual simulation shown as thin blue lines. Statistics were computed across 4 secs for each state.
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M1 dynamics during noradrenergic (NA) receptor blockade303

We then explored the role of NA neuromodulation, which has been shown to influence M1 activity304

during movement (Dacre et al., 2021; Guo et al., 2021; Sheets et al., 2011), by simulating the dis-305

ruption of NA signaling in M1 through local infusion of NA-R antagonists (Schiemann et al., 2015).306

The model reproduced key aspects of the experimental M1 L5B responses under the noradrener-307

gic receptor blocking (NA-R block) condition. The NA-R block condition was initially simulated by308

fixing the 𝐼h conductance in PT cells to 100%, reflecting the lack of NA modulation from LC. The309

long-range inputs from seven cortical and thalamic regions were kept the same as in the control310

condition. Under this condition, the change from quiet to movement states only involved increas-311

ing the firing rate of inputs from from VL (MTh). NA-R block resulted in decreased L5B activation312

duringmovement compared to control condition (Fig. 5C,D) (control: 6.9±9.7Hz, NA-R block: 5.6±6.2313

Hz), particularly in the PT5B population (control: 11.9 ± 11.3 Hz Hz, NA-R block: 5.1 ± 6.3 Hz). In vivo314

experiments also showed a decrease in L5Bmovement rates, although this was more pronounced315

(control: 8.4 ± 7.5 Hz, NA-R block: 1.3 ± 2.2 Hz). A similar decrease during NA-R block was observed316

in the quiet rates of L5B and L5B IT, whereas these model populations remained at a similar rate317

than in the control condition.318

These results suggested, as in the MTh inactivation condition, that the model was not fully319

capturing some effects of LC inputs. We thereforemodified ourmodel to incorporate an additional320

known effect of NA, namely, the modulation of potassium (𝐾+) conductance (Sheets et al., 2011;321

Wang and McCormick, 1993; Favero et al., 2012; Schiemann et al., 2015). Increased NA has been322

shown to reduce 𝐾+ conductance, hence to simulate this effect during the NA-block condition323

we increased potassium conductance by 50 % in all excitatory cell types. The combined effect of324

increasing 𝐼h and 𝐾+ better captured the experimental responses during the NA-block condition325

(see Fig. 5D purple lines). More specifically, L5B, L5 IT and L5Bsuppressed mean firing rates were lower326

for both the quiet and move responses, closely matching those recorded in vivo. This supports327

the hypothesis that changes in 𝐾+ conductance are an important component of LC-mediated NA328

modulation.329

Motor thalamic and noradrenergic inputs affect L5B dynamics in a cell type and330

sublayer-specific manner331

Figure 6. Cell type and sublayer-specific effects of MTh and NA input levels on L5B dynamics A.Mean
L5B firing rate response of experiment (top) and model (bottom) to different levels of MTh and NA inputs.
Firing raster plot of full circuit model shown inset for each of the four extreme conditions. Schematic
cylinders illustrate the cell type (IT=red; PT=blue) and layer analyzed. Experimental values derived from the
control, MTh inactivation and NA-R block conditions indicated with small gray circle (remaining values were
extrapolated) Model results include additional simulations covering the full parameter space explored. B.
Same as in A but for different L5B cell types and subpopulations (IT, PT, PT5Bupper and PT5Blower ) each of which
showed highly specific response patterns to MTh and NA.
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Ourmodel reproduced the pattern ofM1 L5B in vivo responses observed experimentally for dif-332

ferent levels of MTh and NA inputs, and provided insights and predictions of how the different L5B333

subpopulations respond and interact (Fig. 6). The experimental and modeling results reported so334

far suggest thatM1 L5B response depends strongly onMTh andNA inputs. Fig. 6A shows the exper-335

iment (top) andmodel (bottom) L5Bmean firing rates as a function of these two inputs, illustrating336

that MTh and NA inputs moderately increased the L5B response, but both are simultaneously re-337

quired to trigger high L5B activity. Both experiment and model exhibit a similar response pattern,338

progressively increasing with MTh and NA, and a similar range of L5B firing rates. We note that339

these experimental results combine and extrapolate data from the control, MTh inactivation and340

NA-R block conditions. The model results corresponds to the original version (without the modi-341

fications proposed in the previous sections) but we included additional simulations covering the342

full parameter space explored, i.e. all combinations of MTh input and NAmodulation (PT 𝐼h) values343

(see Methods for details). To provide a better intuition of the full circuit model dynamics, we also344

included the spiking raster plots for the 4 conditions with minimum andmaximumMTh/NA values345

(see arrows from the 4 corners of the model heatmap in Fig. 6A).346

The model revealed highly specific and distinct activity patterns for the different L5B cell types347

and sublayers (Fig. 6B). Somewhat surprisingly, L5B IT cells exhibited an inverse responsepattern to348

NA compared to L5B PT and to the overall L5B response (Fig. 6B), showing a decrease firing with349

increases of MTh or NA inputs; and a largely constant response to MTh inputs. The NA response is350

consistent with the low levels of 𝐼h expression in L5B IT cells (Sheets et al., 2011). We hypothesize351

the inverse response to NA between L5B IT and PT cells could be caused by mutual disinhibition352

mediated via L5 interneurons. The lack of L5B IT response to MTh is consistent with the weak pro-353

jections from MTh to deep IT neurons (Yamawaki et al., 2015; Hooks et al., 2013). L5B PT cells354

showed higher peak firing rates than IT (12.8 Hz vs 7.4 Hz) thus dictating the overall L5B response355

pattern and overshadowing L5 IT inverse pattern. Supragranular IT2/3 and IT5A populations exhib-356

ited generally low activity (see Fig. 6A raster plots) when PT5B fired strongly (highMTh andNA), con-357

sistent with their predominant role inmotor preparation (Li et al., 2015b). Themodel also exposed358

sublaminar differences in L5B PT response, with PT5Blower exhibiting more extreme minimum and359

maximum rates than PT5Bupper (0 − 15 Hz vs 3 − 10 Hz). The PT5Blower activation threshold was also360

higher than for PT5Bupper , i.e. it required higher MTh and NA values to start responding strongly.361

This is consistent with the suggested role of PT5Bupper in movement preparation and PT5Blower cells362

in movement initiation (Economo et al., 2018).363

Discussion364

In this work we developed a computational model of the mouse M1 microcircuit and validated it365

against in vivo data. Despite inherent limitations due to gaps in the data (see details in the section366

below), we believe this constitutes the most biophysically detailed model of mouse M1 currently367

available comprising themolecular, cellular and circuit scales. Themodel integrates quantitative ex-368

perimental data on neuronal physiology, morphology, laminar density, cell type distribution, den-369

dritic distribution of synapses, and local and long-range synaptic connectivity, obtained from 31370

studies, with 12 of these coming from our experimental laboratory. Model development also ben-371

efited greatly from extended discussions between the computational and experimental authors.372

Integrating data across scales and managing such a complex model motivated the development373

of a novel software tool, NetPyNE, that provides a high-level interface to NEURON and facilitates374

multiscale brain circuit modeling (Dura-Bernal et al., 2019).375

To validate themodel we focused on reproducingmouseM1 in vivo experimental results across376

different behavioral states and experimental conditions from a single study (Schiemann et al.,377

2015). Simulation results were largely consistent across multiple random wiring seeds and back-378

ground input seeds demonstrating the robustness of themodel. Themodel cell type-specific spon-379

taneous firing rates, associated with the quiet behavior, were consistent with experimental data380

from several in vivo studies (Schiemann et al., 2015; Zagha et al., 2015; Li et al., 2016; Estebanez381
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et al., 2018; Economo et al., 2018) (Fig. 2). We simulated activity corresponding to mouse self-382

paced, voluntary locomotion through increased motor thalamus (MTh) and noradrenaline (NA) in-383

puts. Movement-related changes in L2/3 and L5Bpopulation firing rateswere consistentwith those384

reported in vivo, including bidirectional firing rate changes in distinct L5B pyramidal neurons popu-385

lations (enhanced vs suppressed) (Fig. 3). Local field potentials (LFP) exhibited oscillations at phys-386

iological frequencies, including delta, beta and gamma, which emerged spontaneously despite no387

oscillatory inputs. LFP power in L5B shifted from lower (delta) to higher (gamma) frequency bands388

duringmovement, consistent with in vivo LFP data (Fig. 4). We also simulated two experimentalma-389

nipulations – inactivation of MTh and blocking of NA receptors – which resulted in cell type-specific390

activity changes in L5B correspondent with thosemeasured experimentally (Fig. 5). For each condi-391

tionwe evaluated twohypotheses of the cellular and circuitmechanisms involved, which suggested392

MTh inactivation may affect other long-range inputs, and NA modulation affects not only 𝐼h but393

also K+ conductances. We used the model to systematically explore the interaction between MTh394

and NA inputs and predict M1 output at the level of individual cell types at sublaminar resolution.395

Results captured the overall pattern and response amplitudes measured in vivo, supporting the396

hypotheses both high MTh and NA inputs are required for self-paced voluntary movement-related397

L5B activity (Fig. 6). The model predicted a predominant role of PT cells in dictating L5B responses398

during movement, with PT5Blower providing the strongest response but only when both MTh and399

NA inputs were high enough, i.e. PT5Blower exhibited the highest response threshold. L5B IT cells ex-400

hibited an opposite but lower-amplitude pattern, potentially due to PT-mediated disinhibition, and401

infragranular IT were less engaged during the movement state. These predictions are consistent402

with findings associating IT and PT5Bupper with motor planning and PT5Blower with motor execution403

(Economo et al., 2018;Winnubst et al., 2019;Muñoz-Castañeda et al., 2021; Zhang et al., 2021).404

This is, to the best of our knowledge, the first model of the mouse M1 microcircuit where fir-405

ing rates and LFPs have been directly compared to cell type and layer-specific mouse M1 in vivo406

data associated with different behaviors and experimental manipulations. The model provides a407

quantitative theoretical framework to integrate and interpret M1 experimental data across scales,408

evaluate hypotheses and generate experimentally testable predictions.409

Challenges and limitations410

Our ambition was to develop a detailed multiscale computational model of the mouse M1 micro-411

circuit. We necessarily fell short due to lack of data on a number of keymolecular, cellular, network412

and long-range connectivity aspects. This model was constructed and evaluated over a period of413

five years. During this period we updated the model multiple times to incorporate new data, but414

of course any neurobiological model is always in need of additional updating and improvement as415

new measurements become available.416

Of some concern is the relative lack of data on dendritic ion channel density, whichwill affect the417

influence of distal synaptic inputs on L5 neurons (Labarrera et al., 2018). Cell models are precisely418

tuned to reproduce experimental somatic responses, but limited data is available to characterize419

dendritic physiology. Although we adapted the morphology and physiology of IT cells based on420

their layer, we omitted cellular diversity within each model population – all the model neurons of421

the same cell type and layer have identical morphologies and identical channel parameters. This422

contrasts with other models which vary both channel conductances and morphologies, the latter423

by slightly jittering angles and lengths (Markram et al., 2015a).424

Due to the nature of our circuit mapping methods (Anderson et al., 2010; Hooks et al., 2013;425

Suter and Shepherd, 2015), ourmodel used connection density based on postsynaptic cell type and426

presynaptic locations. Our model’s normalized cortical-depth-dependent connectivity provided427

greater resolution than traditional layer-based wiring, but still contained boundaries where con-428

nection density changed and did not provide cell level point-to-point resolution. This could be429

further improved by fitting discretely binned experimental data to functions of cortical depth, re-430

sulting in smoother connectivity profiles. Other recent models have used a sophisticated version431
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of Peters’ principle (identifying overlap between axonal and dendritic trees) to provide cell-to-cell432

resolution for selected cells, which must then still be replicated and generalized across multiple433

instances to build a large network (Rees et al., 2017;Markram et al., 2015a).434

We are limited not only by lack of precise data for parameter determination, but also by compu-435

tational constraints. Often, network simulations use point neurons in order to avoid the computa-436

tional load of multicompartment neurons, but at the expense of accuracy (Potjans and Diesmann,437

2014; Izhikevich and Edelman, 2008; Schmidt et al., 2018). Here, we compromised by using rela-438

tively small multicompartment models for most populations, with the exception of the neurons439

of L5. In terms of noradrenaline influence, we focused here on one effect on the PT cell type,440

neglecting the wide-ranging effects of this and other neuromodulators (dopamine, acetylcholine)441

(O’Donnell et al., 2012; McCormick, 1992; Graybiel, 1990) and their the influence of second mes-442

senger cascades (Neymotin et al., 2016a). Implementing this functionality is now available via443

NEURON’s rxdmodule(McDougal et al., 2013; Newton et al., 2018). Even with these compromises,444

optimizing and exploring our large network model required millions of HPC core-hours.445

In summary, model firing rate distributions were generally consistent with experimental data446

across populations and behavioral states. We note that the experimental dataset represents a447

small sparse sample of neurons in the modeled cortical volume, resulting in the sample size of448

model data was approximately 3 orders of magnitude larger than that of experiment (e.g. for L5B449

𝑁𝑚𝑜𝑑𝑒𝑙 = 35182 vs 𝑁𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 = 47). Therefore, validation of our model results can be understood450

as showing that the small dataset of experiment cell rates could have been subsampled from the451

larger dataset of model rates. Novel methods that record from an increasingly larger number452

of simultaneous neurons (Hong and Lieber, 2019) will enable additional validation of the model453

results.454

M1 cellular and circuit mechanisms associated with quiet and movement behav-455

iors456

A key question inmotor system research is howmotor cortex activity gets dissociated frommuscle457

movement duringmotor planning ormental imagery, and is then shifted to produce commands for458

action (Ebbesen and Brecht, 2017; Schieber, 2011). One hypothesis has been that this planning-to-459

execution switch might be triggered by NA neuromodulation (Sheets et al., 2011). Downregulation460

of 𝐼h, effected via NA and other neuromodulatory factors, has been shown to increase PT activity461

as a consequence of enhanced temporal and spatial synaptic integration of EPSPs (Sheets et al.,462

2011; Labarrera et al., 2018). This effect is primarily observed in PT cells, since the concentration of463

HCN channels in these cells has been shown to be significantly higher than in IT cells (Sheets et al.,464

2011; Hay et al., 2011). In the model we assumed the baseline 𝐼h to correspond to that of the cell465

tuned to reproduce in vitro data (no NA modulation). For the in vivo quiet condition (low NA mod-466

ulation) we used 75% of that baseline level, and for movement (high NA) we used 25%, consistent467

with values reported experimentally (Labarrera et al., 2018). Paradoxically, 𝐼h downregulation has468

also been reported to reduce pyramidal cell activity in some settings (George et al., 2009;Migliore469

and Migliore, 2012). Here we improved our previous PT cell model (Neymotin et al., 2017) to in-470

clude an 𝐼h model (Migliore and Migliore, 2012) that was able to reconcile these observations: 𝐼h471

downregulation reduced PT response to weak inputs, while increasing the cell response to strong472

inputs (Migliore and Migliore, 2012; George et al., 2009; Sheets et al., 2011; Labarrera et al., 2018).473

An additional hypothesis is that differential planning andmovement outputs would result from474

activation of different cells in L5 (Yu et al., 2008; Anderson et al., 2010;Hooks et al., 2013) mediated475

by distinct local and long-range inputs. Accumulated evidence suggests inputs arising fromMTh (i.e.476

ventrolateral (VL) thalamus) carrying cerebellar signals differentially target M1 populations (Hooks477

et al., 2013) and are involved in triggering movement (Dacre et al., 2021) and in dexterous tasks478

(Guo et al., 2021). Further support for this hypothesis comes from a study that transcriptomically479

identified different PT subtypes in upper vs lower L5B (Economo et al., 2018), and showed that480

PT5Bupper projected to thalamus and generated early preparatory activity, while PT5Blower projected481
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to medulla and generated motor commands.482

These two hypotheses are not incompatible, and indeed our simulations suggest both of these483

mechanisms may coexist and be required for movement-related activity (Fig. 6). NA modulation484

and MTh input by themselves produced an increase in PT5B overall activity, but primarily in the485

preparatory activity-related PT5Bupper population; both mechanisms were required to activate the486

PT5Blower population associated with motor commands (Economo et al., 2018). The model there-487

fore predicts that the transition to motor execution (self-paced, voluntary movement) might re-488

quire both the neuromodulatory prepared state and circuit-level routing of inputs. Different types489

of behaviors and contexts (e.g. goal-directed behaviors with sensory feedback) may involve driving490

inputs from other populations or regions, such as supragranular layers or somatosensory cortex491

(Hooks et al., 2013; Dacre et al., 2021; Zareian et al., 2021; Muñoz-Castañeda et al., 2021). We ac-492

knowledge that the quiet state in the model (and experimental data (Schiemann et al., 2015)) does493

not correspond to a preparatory state, as it lacks short-term memory, delays and other prepara-494

tory components; and hence generalizing previous task-related findings (Economo et al., 2018) on495

the role of PT5Blower and PT5Bupper to interpret our voluntary movement-specific results may be496

inadequate.497

Simulating experimental manipulations: motor thalamus inactivation and nora-498

drenaline blocking499

Attempting to reproduce the extreme conditions posed by experimental manipulations provided500

further insights into the circuitry and mechanisms governing M1 dynamics. During MTh inactiva-501

tion, our baseline model exhibited higher firing rates than in vivo, particularly for the quiet state.502

We hypothesized this may be due to inactivation of MTh (VL) also affecting other afferent regions503

of M1, such as contralateral M1 and S2; either directly (e.g. VL→S2) and/or indirectly via recurrent504

interareal projections (e.g. M1→S2→M1). We evaluated this by reducing activity in these model505

regions, which indeed resulted in a closer match to in vivo rates (Fig. 5). Several other hypothe-506

ses may also explain the observed discrepancies, for example, that movement-related activity 1)507

depends on changes in spiking patterns and not just amplitude (e.g. bursts or oscillatory activ-508

ity); or 2) that it is driven not only by VL but by other long-range inputs (consistent with recent509

findings (Dacre et al., 2021)), and/or by local lateral inputs from non-modeled regions of M1. The510

inclusion of detailed interactions among afferent cortical and thalamic regions is out of the scope511

of this paper. However, our results already suggested possible improvements to the model and512

circuit pathways to explore experimentally, demonstrating that the model can be used to evaluate513

different candidate circuitries and activity patterns.514

Similarly, for theNA receptor block condition, wemodified themodel to evaluate the hypothesis515

that it not only increases PT 𝐼h but also K+ conductance in all pyramidal neurons, as suggested516

by multiple studies (Wang and McCormick, 1993; Favero et al., 2012). This resulted in a closer517

match betweenmodel and experiment. Alternative hypotheses thatmay also account for the initial518

differences observed include NA selectivemodulation of inhibitory synapses, and interactions with519

other neuromodulators such as acetylcholine (Conner et al., 2010). These molecular and cellular520

level mechanisms can be explored in our model to gain insights into their circuit-level effects.521

Emergence of behavior-dependent physiological oscillations522

Our model of M1 neocortex exhibits spontaneous physiological oscillations without rhythmogenic523

synaptic input. Strong oscillations were observed in the delta and beta/gamma ranges with specific524

frequency-dependence on cell class and cortical depth. Strong LFP beta and gamma oscillations525

are characteristic of motor cortex activity in both rodents (Castro-Alamancos, 2013; Tsubo et al.,526

2013) and primates (Rubino et al., 2006; Nishimura et al., 2013), and have been found to enhance527

signal transmission in mouse neocortex (Sohal et al., 2009). Both beta and gamma oscillations528

may play a role in information coding during preparation and execution of movements (Ainsworth529

et al., 2012; Tsubo et al., 2013). More generally, these physiological oscillations are considered to530
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be fundamental to the relation of brain structure and function (Buzsáki and Mizuseki, 2014). As531

the primary output, PT cells receive and integrate many local and long-range inputs. Their only532

local connections to other L5 excitatory neurons are to other PT cells (Kiritani et al., 2012). How-533

ever, by targeting inhibitory cells in L5,(Apicella et al., 2012) they are able to reach across layers534

to influence other excitatory populations, either reducing activity or entraining activity (Naka and535

Adesnik, 2016). These disynaptic E→I→E pathways likely play a role in coupling oscillations within536

and across layers, and in setting frequency bands.537

Implications for experimental research and therapeutics538

Our model integrates previously isolated experimental data at multiple scales into a unified simu-539

lation that can be progressively extended as new data becomes available. This provides a useful540

tool for researchers in the field, who can use this quantitative theoretical framework to evaluate541

hypotheses, make predictions and guide the design of new experiments using our freely-available542

model (see Methods). This in silico testbed can be systematically probed to study microcircuit543

dynamics and biophysical mechanisms with a level of resolution and precision not available ex-544

perimentally. Unraveling the non-intuitive multiscale interactions occurring in M1 circuits can help545

us understand disease and develop new pharmacological and neurostimulation treatments for546

brain disorders (Neymotin et al., 2016c,b; Dura-Bernal et al., 2016; Arle and Shils, 2008; Wang547

et al., 2015; Bensmaia and Miller, 2014; Sanchez et al., 2012), and improve decoding methods for548

brain-machine interfaces (Carmena, 2013; Shenoy and Carmena, 2014; Dura-Bernal et al., 2017;549

Kocaturk et al., 2015).550

Methods551

The methods below describe model development with data provenance, and major aspects of552

the final model. The full documentation of the final model is the source code itself, available for553

download at http://modeldb.yale.edu/260015.554

Morphology and physiology of neuron classes555

Seven excitatory pyramidal cell and two interneuron cell models were employed in the network.556

Their morphology and physiological responses are summarized in Figs. 1A,B,C and 7. In previ-557

ous work we developed layer 5B PT corticospinal cell and L5 IT corticostriatal cell models that re-558

produced in vitro electrophysiological responses to somatic current injections, including sub- and559

super-threshold voltage trajectories and f-I curves (Neymotin et al., 2017; Suter et al., 2013). To560

achieve this, we optimized the parameters of the Hodgkin-Huxley neuron model ionic channels –561

Na, Kdr, Ka, Kd, HCN, CaL, CaN, KCa – within a range of values constrained by the literature. The562

corticospinal and corticostriatal cell model morphologies had 706 and 325 compartments, respec-563

tively, digitally reconstructed from 3D microscopy images. Morphologies are available via Neuro-564

Morpho.org (Ascoli et al., 2007) (archive name “Suter_Shepherd”). For the current simulations, we565

further improved the PT model by 1) increasing the concentration of Ca2+ channels (“hot zones")566

between the nexus and apical tuft, following parameters published in (Hay et al., 2011); 2) low-567

ering dendritic Na+ channel density in order to increase the threshold required to elicit dendritic568

spikes, which then required adapting the axon sodium conductance and axial resistance to main-569

tain a similar f-I curve; 3) replacing the HCN channel model and distribution with a more recent570

implementation (Migliore and Migliore, 2012). The new HCN channel reproduced a wider range571

of experimental observations than our previous implementation (Kole et al., 2006), including the572

change from excitatory to inhibitory effect in response to synaptic inputs of increasing strength573

(George et al., 2009). This was achieved by including a shunting current proportional to 𝐼h. We574

tuned the HCN parameters (𝑙𝑘 and 𝑣𝑟𝑒𝑣𝑙𝑘) and passive parameters to reproduce the findings noted575

above, while keeping a consistent f-I curve consistent (Suter et al., 2013).576

The network model includes five other excitatory cell classes: layer 2/3, layer 4, layer 5B and577

layer 6 IT neurons and layer 6 CT neurons. Since our focus was on the role of L5 neurons, other cell578
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classes were implemented using simpler models as a trade-off to enable running a larger number579

of exploratory network simulations. Previously we had optimized 6-compartment neuron models580

to reproduce somatic current clamp recordings from two IT cells in layers 5A and 5B. The layer 5A581

cell had a lower f-I slope (77 Hz/nA) and higher rheobase (250 nA) than that in layer 5B (98 Hz/nA582

and 100 nA). Based on our own and published data, we found two broad IT categories based on583

projection and intrinsic properties: corticocortical IT cells found in upper layers 2/3 and 4 which584

exhibited a lower f-I slope (∼72 Hz/nA) and higher rheobase (∼281 pA) than IT corticostriatal cells585

in deeper layers 5A, 5B and 6 (∼96 Hz/nA and ∼106 pA) (Yamawaki et al., 2015; Suter et al., 2013;586

Oswald et al., 2013). CT neurons’ f-I rheobase and slope (69 Hz/nA and 298 pA) was closer to that587

of corticocortical neurons (Oswald et al., 2013). We therefore employed the layer 5A IT model for588

layers 2/3 and 4 IT neurons and layer 6 CT neurons, and the layer 5B IT model for layers 5A, 5B and589

6 IT neurons. We further adapted cell models by modifying their apical dendrite length to match590

the average cortical depth of the layer, thus introducing small variations in the firing responses of591

neurons across layers.592

We implemented models for two major classes of GABAergic interneurons (Harris and Shep-593

herd, 2015): parvalbumin-expressing fast-spiking (PV) and somatostatin-expressing low-threshold594

spiking neurons (SOM). We employed existing simplified 3-compartment (soma, axon, dendrite)595

models (Konstantoudaki et al., 2014) and increased their dendritic length to better match the av-596

erage f-I slope and rheobase experimental values of cortical basket (PV) and Martinotti (SOM) cells597

(Neuroelectro online database (Tripathy et al., 2015)).598

A

B

Figure 7. Microcircuit layer composition and cell type f-I response. A. Proportion of cell classes per layer;
B. f-I curve for each excitatory and inhibitory cell types. All properties were derived from published
experimental data. Populations labels include the cell class and layer, e.g. ’IT2’ represents the IT class neurons
in layer 2/3.

Microcircuit composition: neuron locations, densities and ratios599

We modeled a cylindric volume of the mouse M1 cortical microcircuit with a 300 𝜇𝑚 diameter and600

1350 𝜇𝑚 height (cortical depth) at full neuronal density for a total of 10,073 neurons (Fig. 1). Cylin-601

der diameter was chosen to approximately match the horizontal dendritic span of a corticospinal602

neuron located at the center, consistent with the approach used in the Human Brain Project model603

of the rat S1 microcircuit (Markram et al., 2015b). Mouse cortical depth and boundaries for layers604

2/3, 4, 5A, 5B and 6 were based on our published experimental data (Weiler et al., 2008; Anderson605

et al., 2010; Yamawaki et al., 2015). Although traditionally M1 has been considered an agranular606

area lacking layer 4, we recently identified M1 pyramidal neurons with the expected prototypical607

physiological, morphological and wiring properties of layer 4 neurons (Yamawaki et al., 2015) (see608

18 of 31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.03.479040doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.479040
http://creativecommons.org/licenses/by-nc-nd/4.0/


also (Bopp et al., 2017; Barbas and García-Cabezas, 2015)), and therefore incorporated this layer609

in the model.610

Cell classes present in each layer were determined based on mouse M1 studies (Harris and611

Shepherd, 2015; Suter et al., 2013; Anderson et al., 2010; Yamawaki et al., 2015; Oswald et al.,612

2013; Konstantoudaki et al., 2014; Naka and Adesnik, 2016). IT cell populations were present in613

all layers, whereas the PT cell population was confined to layer 5B, and the CT cell population only614

occupied layer 6. SOM and PV interneuron populations were distributed in each layer. Neuronal615

densities (neurons per𝑚𝑚3) for each layer (Fig. 1𝐶) were taken fromahistological and imaging study616

of mouse agranaular cortex (Tsai et al., 2009). The proportion of excitatory to inhibitory neurons617

per layer was obtained from mouse S1 data (Lefort et al., 2009). The proportion of IT to PT and IT618

to CT cells in layers 5B and 6, respectively, were both estimated as 1:1 (Harris and Shepherd, 2015;619

Suter et al., 2013; Yamawaki and Shepherd, 2015). The ratio of PV to SOM neurons per layer was620

estimated as 2:1 based on mouse M1 and S1 studies (Katzel et al., 2011;Wall et al., 2016) (Fig. 7𝐵).621

Since data for M1 layer 4 was not available, interneuron populations labeled PV5A and SOM5A622

occupy both layers 4 and 5A. The number of cells for each population was calculated based on the623

modeled cylinder dimensions, layer boundaries and neuronal proportions and densities per layer.624

Local connectivity625

Figure 8. M1 excitatory connectivity: local microcircuitry and and long-range inputs. A. Strength of local
excitatory connections as a function of pre- and post-synaptic normalized cortical depth (NCD) and
post-synaptic cell class; values used to construct the network. B. Convergence of long-range excitatory inputs
from seven thalamic and cortical regions as a function post-synaptic NCD and cell class; values used to
construct the network. C. Probability of connection matrix for excitatory (left) and inhibitory (right)
populations calculated from an instantiation of the base model network. D. Left. Synaptic density profile (1D)
along the dendritic arbor for inputs from layer 2/3 IT, VL, S1, S2, cM1 and M2 to PT neurons. Calculated by
normalizing sCRACM maps ((Suter and Shepherd, 2015) Figs. 5 and 6) by dendritic length at each grid location
and averaging across rows. Middle and Right. Synaptic density per neuron segment automatically calculated
for each neuron based on its morphology and the pre- and postsynaptic cell type-specific radial synaptic
density function. Here, VL→PT and S2→PT are compared and exhibit partially complementary distributions.

We calculated local connectivity between M1 neurons (Figures 1𝐶 and 8𝐴) by combining data626

from multiple studies. Data on excitatory inputs to excitatory neurons (IT, PT and CT) was pri-627

marily derived from mapping studies using whole-cell recording, glutamate uncaging-based laser-628

scanning photostimulation (LSPS) and subcellular channelrhodopsin-2-assisted circuit mapping629

(sCRACM) analysis (Weiler et al., 2008; Anderson et al., 2010; Yamawaki et al., 2015; Yamawaki630
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and Shepherd, 2015). Connectivity data was postsynaptic cell class-specific and employed normal-631

ized cortical depth (NCD) instead of layers as the primary reference system. Unlike layer definitions632

which can be interpreted differently between studies, NCD provides a well-defined, consistent and633

continuous reference system, depending only on two readily-identifiable landmarks: pia (NCD=0)634

and white matter (NCD=1). Incorporating NCD-based connectivity into our model allowed us to635

capture wiring patterns down to a 100 𝜇𝑚 spatial resolution, well beyond traditional layer-based636

cortical models. M1 connectivity varied systematically within layers. For example, the strength of637

inputs from layer 2/3 to L5B corticospinal cells depends significantly on cell soma depth, with upper638

neurons receiving much stronger input (Anderson et al., 2010).639

Connection strength thus depended on presynaptic NCD and postsynaptic NCD and cell class.640

For postsynaptic IT neurons with NCD ranging from 0.1 to 0.37 (layers 2/3 and 4) and 0.8 to 1.0641

(layer 6) we determined connection strengths based on data from (Weiler et al., 2008) with cortical642

depth resolution of 140 𝜇𝑚-resolution. For postsynaptic IT and PT neurons with NCD between 0.37643

and 0.8 (layers 5A and 5B) we employed connectivity strength data from (Anderson et al., 2010)644

with cortical depth resolution of 100 𝜇𝑚. For postsynaptic CT neurons in layer 6 we used the same645

connection strengths as for layer 6 IT cells (Weiler et al., 2008), but reduced to 62%of original values,646

following published data on the circuitry of M1 CT neurons (Yamawaki and Shepherd, 2015). Our647

data (Yamawaki and Shepherd, 2015) also suggested that connection strength from layer 4 to layer648

2/3 IT cells was similar to that measured in S1, so for these projections we employed values from649

Lefort’s S1 connectivity strength matrix (Lefort et al., 2009). Experimentally, these connections650

were found to be four times stronger than in the opposite direction – from layer 2/3 to layer 4 – so651

we decreased the latter in the model to match this ratio.652

Following previous publications (Kiritani et al., 2012; Lefort et al., 2009), we defined connection653

strength (𝑠𝑐𝑜𝑛, in mV) between two populations, as the product of their probability of connection654

(𝑝𝑐𝑜𝑛) and the unitary connection somatic EPSP amplitude in mV (𝑣𝑐𝑜𝑛), i.e. 𝑠𝑐𝑜𝑛 = 𝑝𝑐𝑜𝑛 × 𝑣𝑐𝑜𝑛. We655

employed this equivalence to disentangle the connection 𝑠𝑐𝑜𝑛 values provided by the above LSPS656

studies into 𝑝𝑐𝑜𝑛 and 𝑣𝑐𝑜𝑛 values that we could use to implement the model. First, we rescaled the657

LSPS raw current values in pA (Anderson et al., 2010; Weiler et al., 2008; Yamawaki et al., 2015;658

Yamawaki and Shepherd, 2015) to match 𝑠𝑐𝑜𝑛 data from a paired recording study of mouse M1659

L5 excitatory circuits (Kiritani et al., 2012). Next, we calculated the M1 NCD-based 𝑣𝑐𝑜𝑛 matrix by660

interpolating a layerwise unitary connection EPSP amplitude matrix of mouse S1 (Lefort et al.,661

2009), and thresholding values between 0.3 and 1.0 mV. Finally, we calculated the probability of662

connection matrix as 𝑝𝑐𝑜𝑛 = 𝑠𝑐𝑜𝑛∕𝑣𝑐𝑜𝑛.663

To implement 𝑣𝑐𝑜𝑛 values in the model we calculated the required NEURON connection weight664

of an excitatory synaptic input to generate a somatic EPSP of 0.5 mV at each neuron segment.665

This allowed us to calculate a scaling factor for each segment that converted 𝑣𝑐𝑜𝑛 values into NEU-666

RONweights, such that the somatic EPSP response to a unitary connection input was independent667

of synaptic location – also known as synaptic democracy (Rumsey and Abbott, 2006; Poirazi and668

Papoutsi, 2020). This is consistent with experimental evidence showing synaptic conductances in-669

creased with distance from soma, to normalize somatic EPSP amplitude of inputs within 300 𝜇𝑚670

of soma (Magee and Cook, 2000). Following this study, scaling factor values above 4.0 – such as671

those calculated for PT cell apical tufts – were thresholded to avoid overexcitability in the network672

context where each cell receives hundreds of inputs that interact nonlinearly (Spruston, 2008; Be-673

habadi et al., 2012). For morphologically detailed cells (layer 5A IT and layer 5B PT), the number674

of synaptic contacts per unitary connection (or simply, synapses per connection) was set to five,675

an estimated average consistent with the limited mouse M1 data (Hu and Agmon, 2016) and rat676

S1 studies (Bruno and Sakmann, 2006; Markram et al., 2015b). I ndividual synaptic weights were677

calculated by dividing the unitary connection weight (𝑣𝑐𝑜𝑛) by the number of synapses per connec-678

tion. Although the method does not account for nonlinear summation effects (Spruston, 2008), it679

provides a reasonable approximation and enables employing a more realistic number and spatial680

distribution of synapses, whichmay be key for dendritic computations (London and Häusser, 2005).681
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For the remaining cell models, all with six compartments or less, a single synapse per connection682

was used.683

For excitatory inputs to inhibitory cell types (PV and SOM) we started with the same values as684

for IT cell types but adapted these based on the specific connectivity patterns reported for mouse685

M1 interneurons (Apicella et al., 2012; Yamawaki and Shepherd, 2015) (Fig. 8𝐴). Following the686

layer-based description in these studies, we employed three major subdivisions: layer 2/3 (NCD687

0.12 to 0.31), layers 4, 5A and 5B (NCD 0.31 to 0.77) and layer 6 (NCD 0.77 to 1.0). We increased688

the probability of layer 2/3 excitatory connections to layers 4, 5A and 5B SOM cells by 50% and689

decreased that to PV cells by 50% (Apicella et al., 2012). We implemented the opposite pattern690

for excitatory connections arising from layer 4,5A,5B IT cells such that PV interneurons received691

stronger intralaminar inputs than SOM cells (Apicella et al., 2012). The model also accounts for692

layer 6 CT neurons generating relativelymore inhibition than IT neurons (Yamawaki and Shepherd,693

2015). Inhibitory connections from interneurons (PV and SOM) to other cell types were limited to694

neurons in the same layer (Katzel et al., 2011), with layers 4, 5A and 5B combined into a single695

layer (Naka and Adesnik, 2016). Probability of connection decayed exponentially with the distance696

between the pre- and post-synaptic cell bodies with length constant of 100 𝜇𝑚 (Gal et al., 2017;697

Fino and Yuste, 2011). We introduced a correction factor to the distance-dependent connectivity698

measures to avoid the border effect, i.e. cells near the modeled volume edges receiving less or699

weaker connections than those in the center.700

For comparison with other models and experiments, we calculated the probability of connec-701

tion matrices arranged by population (instead of NCD) for the base model network instantiation702

used throughout the results. (Fig. 8𝐵).703

Excitatory synapses consisted of colocalized AMPA (rise, decay 𝜏: 0.05, 5.3 ms) and NMDA (rise,704

decay 𝜏: 15, 150ms) receptors, both with reversal potential of 0mV. The ratio of NMDA to AMPA re-705

ceptors was 1.0 (Myme et al., 2003), meaning their weights were each set to 50% of the connection706

weight. NMDA conductance was scaled by 1∕(1 + 0.28 ⋅𝑀𝑔 ⋅ exp (−0.062 ⋅ 𝑉 )); Mg = 1mM (Jahr and707

Stevens, 1990b). Inhibitory synapses from SOM to excitatory neurons consisted of a slow 𝐺𝐴𝐵𝐴𝐴708

receptor (rise, decay 𝜏: 2, 100ms) and𝐺𝐴𝐵𝐴𝐵 receptor, in a 90% to 10% proportion; synapses from709

SOM to inhibitory neurons only included the slow𝐺𝐴𝐵𝐴𝐴 receptor; and synapses from PV to other710

neurons consisted of a fast 𝐺𝐴𝐵𝐴𝐴 receptor (rise, decay 𝜏: 0.07, 18.2). The reversal potential was711

-80 mV for 𝐺𝐴𝐵𝐴𝐴 and -95 mV for 𝐺𝐴𝐵𝐴𝐵 . The 𝐺𝐴𝐵𝐴𝐵 synapse was modeled using second mes-712

senger connectivity to a G protein-coupled inwardly-rectifying potassium channel (GIRK) (Destexhe713

et al., 1996). The remaining synapses were modeled with a double-exponential mechanism.714

Connection delays were estimated as 2 ms plus a variable delay depending on the distance715

between the pre- and postsynaptic cell bodies assuming a propagation speed of 0.5 m/s.716

Long-range input connectivity717

We added long-range input connections from seven regions that are known to project to M1: tha-718

lamic posterior nucleus (PO), ventro-lateral thalamus (VL), primary somatosensory cortex (S1), sec-719

ondary somatosensory cortex (S2), contralateral primary motor cortex (cM1), secondary motor720

cortex (M2) and orbital cortex (OC). Each region consisted of a population of 1000 (Constantinople721

and Bruno, 2013; Bruno and Sakmann, 2006) spike-generators (NEURON VecStims) that generated722

independent random Poisson spike trains with uniform distributed rates between 0 and 2.5 Hz or723

0 and 5 Hz (Yamashita et al., 2013; Hirata and Castro-Alamancos, 2006) for spontaneous firing;724

or 0 and 10 Hz (Isomura et al., 2009; Jacob et al., 2012) when simulating increased input from725

a region. Previous studies provided a measure of normalized input strength from these regions726

as a function of postsynaptic cell type and layer or NCD. Broadly, PO (Yamawaki et al., 2015; Ya-727

mawaki and Shepherd, 2015; Hooks et al., 2013), S1 (Mao et al., 2011; Yamawaki et al., 2021) and728

S2 (Suter and Shepherd, 2015) projected strongly to IT cells in layers 2/3 and 5A (PO also to layer729

4); VL projected strongly to PT cells and to layer 4 IT cells (Yamawaki et al., 2015; Yamawaki and730

Shepherd, 2015; Hooks et al., 2013); cM1 and M2 projected strongly to IT and PT cells in layers 5B731
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and 6 (Hooks et al., 2013); and OC projected strongly to layer 6 CT and IT cells (Hooks et al., 2013).732

We implemented these relations by estimating themaximumnumber of synaptic inputs from each733

region and multiplying that value by the normalized input strength for each postsynaptic cell type734

and NCD range. This resulted in a convergence value – average number of synaptic inputs to each735

postsynaptic cell – for each projection Fig. 8𝐶 . We fixed all connection weights (unitary connection736

somatic EPSP amplitude) to 0.5 mV, consistent with rat and mouse S1 data (Hu and Agmon, 2016;737

Constantinople and Bruno, 2013).738

To estimate the maximum number of synaptic inputs per region, we made a number of as-739

sumptions based on the limited data available (Figs. 8𝐶 and 1𝐶). First, we estimated the average740

number of synaptic contacts per cell as 8234 by rescaling rat S1 data (Meyer et al., 2010b) based741

on our own observations for PT cells (Suter et al., 2013) and contrasting with related studies (Schüz742

and Palm, 1989;DeFelipe et al., 2002); we assumed the same value for all cell types so we could use743

convergence to approximate long-range input strength. We assumed 80 % of synaptic inputs were744

excitatory vs. 20 % inhibitory (DeFelipe et al., 2002; Markram et al., 2015b); out of the excitatory745

inputs, 80 % were long-range vs. 20 % local (Markram et al., 2015b; Stepanyants et al., 2009); and746

out of the inhibitory inputs, 30 % were long-range vs. 70 % local (Stepanyants et al., 2009). Finally,747

we estimated the percentage of long-range synaptic inputs arriving from each region based on748

mouse brain mesoscale connectivity data (Oh et al., 2014) and other studies (Meyer et al., 2010a;749

Bruno and Sakmann, 2006;Meyer et al., 2010b; Zhang et al., 2016; Bopp et al., 2017).750

Experimental evidence demonstrates the location of synapses along dendritic trees follows very751

specific patterns of organization that depend on the brain region, cell type and cortical depth (Pe-752

treanu et al., 2009; Suter and Shepherd, 2015); these are likely to result in important functional753

effects (Kubota et al., 2015; Laudanski et al., 2014; Spruston, 2008). We employed sCRACM data to754

estimate the synaptic density along the dendritic arbor – 1D radial axis – for inputs from PO, VL, M2755

and OC to layers 2/3, 5A, 5B and 6 IT and CT cell (Hooks et al., 2013) , and from layer 2/3 IT, VL, S1,756

S2, cM1 and M2 to PT neurons (Suter and Shepherd, 2015) (Fig. 8𝐷). To approximate radial synap-757

tic density we divided the sCRACM map amplitudes by the dendritic length at each grid location,758

and averaged across rows. Once all network connections had been generated, synaptic locations759

were automatically calculated for each cell based on its morphology and the pre- and postsynaptic760

cell type-specific radial synaptic density function (Fig. 8𝐷). Synaptic inputs from PV to excitatory761

cells were located perisomatically (50 𝜇𝑚 around soma); SOM inputs targeted apical dendrites of762

excitatory neurons (Naka and Adesnik, 2016; Katzel et al., 2011); and all inputs to PV and SOM cells763

targeted apical dendrites. For projections where no data synaptic distribution data was available –764

IT/CT, S1, S2 and cM1 to IT/CT cells – we assumed a uniform dendritic length distribution.765

Model implementation, simulation and analysis766

Modeling and simulation tools767

The model was developed using parallel NEURON (neuron.yale.edu)(Lytton et al., 2016) and Net-768

PyNE (www.netpyne.org)(Dura-Bernal et al., 2019), a Python package to facilitate the development769

of biological neuronal networks in the NEURON simulator. NetPyNE emphasizes the incorpora-770

tion of multiscale anatomical and physiological data at varying levels of detail. It converts a set of771

simple, standardized high-level specifications in a declarative format into a NEURON model. This772

high-level language enables, for example, defining connectivity as function of NCD, and distributing773

synapses across neurons based on normalized synaptic density maps. NetPyNE facilitates running774

parallel simulations by taking care of distributing the workload and gathering data across comput-775

ing nodes, and automates the submission of batches of simulations for parameter optimization776

and exploration. It also provides a powerful set of analysis methods so the user can plot spike777

raster plots, LFP power spectra, information transfer measures, connectivity matrices, or intrinsic778

time-varying variables (eg. voltage) of any subset of cells. To facilitate data sharing, the package779

saves and loads the specifications, network, and simulation results using common file formats780

(Pickle, Matlab, JSON or HDF5), and can convert to and from NeuroML (Gleeson et al., 2010, 2019)781

22 of 31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.03.479040doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.03.479040
http://creativecommons.org/licenses/by-nc-nd/4.0/


and SONATA (Dai et al., 2019), standard data formats for exchanging models in computational782

neuroscience. Simulations were run on XSEDE supercomputers Comet and Stampede, using the783

Neuroscience Gateway (NSG) and our own resource allocation, and on Google Cloud supercom-784

puters.785

Parameter exploration/optimization786

NetPyNE facilitates optimization and exploration of network parameters through automated batch787

simulations. The user specifies the range of parameters and parameter values to explore and the788

tool automatically submits the jobs inmulticoremachines (usingNEURON’s Bulletin board) or HPCs789

(using SLURM/Torque). Multiple pre-defined batch simulation setups can be fully customized for790

different environments. We ran batch simulations using NetPyNE’e automated SLURM job submis-791

sion on San Diego Supercomputer Center’s (SDSC) Comet supercomputer and on Google Cloud792

Platform.793

Local Field Potentials794

The NetPyNE tool also includes the ability to simulate local field potentials (LFPs) obtained from795

extracellular electrodes located at arbitrary 3D locations within the network. The LFP signal at each796

electrode is obtained using the "line source approximation" (Parasuram et al., 2016; Buzsáki et al.,797

2012; Lindén et al., 2013), which is based on the sumof themembrane current source generated at798

each cell segment divided by the distance between the segment and the electrode. The calculation799

assumes that the electric conductivity and permittivity of the extracellular medium are constant800

everywhere and do not depend on frequency.801

Firing rates statistics802

Firing rate statistics were always calculated starting at least 1 second after the simulation start time803

to allow the network to reach a steady state. To enable the statistical comparison of the results in804

Fig. 2 we only included neurons with firing rates above 0 Hz, given that most experimental datasets805

(Estebanez et al., 2018; Zagha et al., 2015; Li et al., 2015a) already included this constrain. For the806

statistical comparison in the remaining sections we included neurons with firing rates of 0 Hz, as807

these were available both in the experimental dataset (Schiemann et al., 2015) and the model.808

Therefore, the quiet state mean firing rates reported in Fig. 2 (which only included rates > 0𝐻𝑧)809

were higher than those in the remaining sections.810

Experimental procedures811

Details of the experimental procedures used to obtain the data in this study were previously de-812

scribed in (Schiemann et al., 2015), including animals and surgery, motion index and motion pat-813

tern discrimination, and in vivo electrophysiology and pharmacology. The dataset on cell type-814

specific in vivo firing rates across states and conditions was collected and previously reported in815

the same publication. The LFP experimental data reported here was collected during that same816

study but only a small subset was reported in the experimental paper ((Schiemann et al., 2015) Fig.817

1)818

The experimental LFP data used in Fig. 4 was preprocessed to remove outliers and potential819

artifacts. The raw LFP data consisted of 30 recordings of varying duration during head-restrained820

mice locomotion (at different speeds) on a cylindrical runged treadmill. In order to compare it821

to the simulated data, the quiet in vivo raw LFP were classified into quiet and movement peri-822

ods (using the same criteria as in (Schiemann et al., 2015)) and then segmented into 4-second823

samples. We then calculated the LFP power spectral density (PSD) using the Morlet wavelet trans-824

form method, normalized within each sample and computed the mean power for five standard825

frequency bands (delta, theta, alpha, beta and gamma). The resulting dataset of 5-element vec-826

tors (normalized power in each frequency band) exhibited high variability: the mean coefficient827

of variation (CV) across quiet samples was 0.60 and 0.44 for move samples. Therefore we used k-828

means to cluster the dataset. The quiet condition resulted in one predominant cluster with similar829
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power for all bands (73% of samples), and one with higher gamma power (27% of samples). Con-830

versely, themove condition predominant cluster exhibited significantly higher gamma power (77%831

of samples), whereas the smaller cluster showed similar power across bands (23%). As expected,832

the variability within each cluster was significantly reduced compared to the full dataset (large clus-833

ters: quiet CV=0.33, move CV=0.32; small clusters: quiet CV=0.31, move CV=0.28). For comparison834

with the model results we employed the large quiet and move clusters (with over 70% of samples)835

(Fig. 4). The smaller clustersmay correspond to different internal states during behavior, recording836

from regions/layers with different levels of involvement in the behavior, transition periods, and/or837

experimental artifacts (e.g. inaccurate segmenting of behavior).838
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